First try with complete algorithm

This commit is contained in:
Ricardo Montañana Gómez 2023-12-14 15:55:08 +01:00
parent dbf2f35502
commit b73f4be146
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
3 changed files with 171 additions and 89 deletions

View File

@ -96,29 +96,32 @@ namespace platform {
return Colors::RESET();
}
}
json GridSearch::buildTasks()
json GridSearch::build_tasks_mpi()
{
auto result = json::array();
auto tasks = json::array();
auto grid = GridData(Paths::grid_input(config.model));
auto datasets = Datasets(false, Paths::datasets());
auto datasets_names = processDatasets(datasets);
auto grid = GridData(Paths::grid_input(config.model));
for (const auto& dataset : datasets_names) {
for (const auto& seed : config.seeds) {
auto combinations = grid.getGrid(dataset);
for (const auto& hyperparam_line : combinations) {
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
json task = {
{ "dataset", dataset },
{ "seed", seed },
{ "hyperparameters", hyperparameters.get(dataset) }
{ "fold", n_fold}
};
result.push_back(task);
tasks.push_back(task);
}
}
}
return result;
// It's important to shuffle the array so heavy datasets are spread across the Workers
std::random_device rd;
std::mt19937 g(rd());
std::shuffle(tasks.begin(), tasks.end(), g);
return tasks;
}
std::pair<int, int> GridSearch::partRange(int n_tasks, int nprocs, int rank)
std::pair<int, int> GridSearch::part_range_mpi(int n_tasks, int nprocs, int rank)
{
int assigned = 0;
int remainder = n_tasks % nprocs;
@ -140,11 +143,98 @@ namespace platform {
{
std::cout << "* (" << config_mpi.rank << "): " << status << std::endl;
}
void GridSearch::go_MPI(struct ConfigMPI& config_mpi)
void GridSearch::process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results)
{
// Process the task and store the result in the results json
auto grid = GridData(Paths::grid_input(config.model));
auto dataset = task["dataset"].get<std::string>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
// Generate the hyperparamters combinations
auto combinations = grid.getGrid(dataset);
status(config_mpi, "Processing dataset " + dataset + " with seed " + std::to_string(seed) + " and fold " + std::to_string(n_fold));
auto [X, y] = datasets.getTensors(dataset);
auto states = datasets.getStates(dataset);
auto features = datasets.getFeatures(dataset);
auto className = datasets.getClassName(dataset);
//
// Start working on task
//
Fold* fold;
if (config.stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
auto [train, test] = fold->getFold(n_fold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
auto num = 0;
double best_fold_score = 0.0;
json best_fold_hyper;
for (const auto& hyperparam_line : combinations) {
//status(config_mpi, "* Dataset: " + dataset + " Fold: " + std::to_string(n_fold) + " Processing hyperparameters: " + std::to_string(++num) + "/" + std::to_string(combinations.size()));
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
Fold* nested_fold;
if (config.stratified)
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new KFold(config.nested, y_train.size(0), seed);
double score = 0.0;
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// Nested level fold
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nested_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
// Build Classifier with selected hyperparameters
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(hyperparameters.get(dataset));
// Train model
clf->fit(X_nested_train, y_nested_train, features, className, states);
// Test model
score += clf->score(X_nested_test, y_nested_test);
}
delete nested_fold;
score /= config.nested;
if (score > best_fold_score) {
best_fold_score = score;
best_fold_hyper = hyperparam_line;
}
}
delete fold;
// Build Classifier with the best hyperparameters to obtain the best score
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(best_fold_hyper);
clf->fit(X_train, y_train, features, className, states);
best_fold_score = clf->score(X_test, y_test);
// Save results
results[dataset][std::to_string(n_fold)]["score"] = best_fold_score;
results[dataset][std::to_string(n_fold)]["hyperparameters"] = best_fold_hyper;
results[dataset][std::to_string(n_fold)]["hyperparameters"] = seed;
status(config_mpi, "Finished dataset " + dataset + " with seed " + std::to_string(seed) + " and fold " + std::to_string(n_fold) + " score " + std::to_string(best_fold_score));
}
void GridSearch::go_mpi(struct ConfigMPI& config_mpi)
{
/*
* Manager will do the loops dataset, seed, fold (primary) and hyperparameter
* Workers will do the loop fold (nested)
* Each task is a json object with the following structure:
* {
* "dataset": "dataset_name",
* "seed": # of seed to use,
* "model": "model_name",
* "Fold": # of fold to process
* }
*
* The overall process consists in these steps:
* 1. Manager will broadcast the tasks to all the processes
@ -152,18 +242,18 @@ namespace platform {
* 1.2 Broadcast the length of the following string
* 1.2 Broadcast the tasks as a char* string
* 2. Workers will receive the tasks and start the process
* 2.1 A method will tell each worker the range of combinations to process
* 2.2 Each worker will process the combinations and return the best score obtained
* 3. Manager gather the scores from all the workers and get the best hyperparameters
* 3.1 Manager find out which worker has the best score
* 3.2 Manager broadcast the winner worker
* 3.3 The winner worker send the best hyperparameters to manager
*
* 2.1 A method will tell each worker the range of tasks to process
* 2.2 Each worker will process the tasks and generate the best score for each task
* 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
* 3.1 Obtain the maximum size of the results message of all the workers
* 3.2 Gather all the results from the workers into the manager
* 3.3 Compile the results from all the workers
* 3.4 Filter the best hyperparameters for each dataset
*/
char* msg;
int tasks_size;
if (config_mpi.rank == config_mpi.manager) {
auto tasks = buildTasks();
auto tasks = build_tasks_mpi();
auto tasks_str = tasks.dump();
tasks_size = tasks_str.size();
msg = new char[tasks_size + 1];
@ -183,75 +273,66 @@ namespace platform {
// 2. All Workers will receive the tasks and start the process
//
int num_tasks = tasks.size();
auto [start, end] = partRange(num_tasks, config_mpi.n_procs, config_mpi.rank);
// 2.2 Each worker will process the combinations and return the best score obtained
// 2.1 A method will tell each worker the range of tasks to process
auto [start, end] = part_range_mpi(num_tasks, config_mpi.n_procs, config_mpi.rank);
// 2.2 Each worker will process the tasks and return the best scores obtained
auto datasets = Datasets(config.discretize, Paths::datasets());
json results;
for (int i = start; i < end; ++i) {
auto task = tasks[i];
auto dataset = task["dataset"].get<std::string>();
auto seed = task["seed"].get<int>();
auto hyperparam_line = task["hyperparameters"];
status(config_mpi, "Processing dataset " + dataset + " with seed " + std::to_string(seed) + " and hyperparameters " + hyperparam_line.dump());
auto [X, y] = datasets.getTensors(dataset);
auto states = datasets.getStates(dataset);
auto features = datasets.getFeatures(dataset);
auto className = datasets.getClassName(dataset);
double bestScore = 0.0;
json bestHyperparameters;
// First level fold
Fold* fold;
if (config.stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
for (int nfold = 0; nfold < config.n_folds; nfold++) {
status(config_mpi, "Processing fold " + std::to_string(nfold + 1));
auto [train, test] = fold->getFold(nfold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
auto num = 0;
json result_fold;
double hypScore = 0.0;
double bestHypScore = 0.0;
json bestHypHyperparameters;
Fold* nested_fold;
if (config.stratified)
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new KFold(config.nested, y_train.size(0), seed);
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// Nested level fold
status(config_mpi, "Processing nested fold " + std::to_string(n_nested_fold + 1));
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nexted_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
// Build Classifier with selected hyperparameters
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(hyperparameters.get(dataset));
// Train model
clf->fit(X_nexted_train, y_nested_train, features, className, states);
// Test model
hypScore += clf->score(X_nested_test, y_nested_test);
}
delete nested_fold;
hypScore /= config.nested;
if (hypScore > bestHypScore) {
bestHypScore = hypScore;
bestHypHyperparameters = hyperparam_line;
// Process task
process_task_mpi(config_mpi, tasks[i], datasets, results);
}
int size = results.dump().size() + 1;
int max_size = 0;
//
// 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
//
//3.1 Obtain the maximum size of the results message of all the workers
MPI_Reduce(&size, &max_size, 1, MPI_INT, MPI_MAX, config_mpi.manager, MPI_COMM_WORLD);
// Assign the memory to the message and initialize it to 0s
char* total;
msg = new char[max_size] {};
strncpy(msg, results.dump().c_str(), size);
if (config_mpi.rank == config_mpi.manager) {
total = new char[max_size * config_mpi.n_procs] {};
}
// 3.2 Gather all the results from the workers into the manager
MPI_Gather(msg, max_size, MPI_CHAR, total, max_size * config_mpi.n_procs, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
delete[] msg;
if (config_mpi.rank == config_mpi.manager) {
json total_results;
json best_results;
// 3.3 Compile the results from all the workers
for (int i = 0; i < config_mpi.n_procs; ++i) {
json partial_results = json::parse(total + i * max_size);
for (auto& [dataset, folds] : partial_results.items()) {
for (auto& [fold, result] : folds.items()) {
total_results[dataset][fold] = result;
}
}
}
delete fold;
delete[] total;
// 3.4 Filter the best hyperparameters for each dataset
auto grid = GridData(Paths::grid_input(config.model));
for (auto& [dataset, folds] : total_results.items()) {
double best_score = 0.0;
json best_hyper;
for (auto& [fold, result] : folds.items()) {
if (result["score"] > best_score) {
best_score = result["score"];
best_hyper = result["hyperparameters"];
}
}
json result = {
{ "score", best_score },
{ "hyperparameters", best_hyper },
{ "date", get_date() + " " + get_time() },
{ "grid", grid.getInputGrid(dataset) },
{ "duration", 0 }
};
best_results[dataset] = result;
}
save(total_results);
}
}
void GridSearch::go()

View File

@ -34,7 +34,7 @@ namespace platform {
public:
explicit GridSearch(struct ConfigGrid& config);
void go();
void go_MPI(struct ConfigMPI& config_mpi);
void go_mpi(struct ConfigMPI& config_mpi);
~GridSearch() = default;
json getResults();
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
@ -45,8 +45,9 @@ namespace platform {
pair<double, json> processFileSingle(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
pair<double, json> processFileNested(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
struct ConfigGrid config;
pair<int, int> partRange(int n_tasks, int nprocs, int rank);
json buildTasks();
pair<int, int> part_range_mpi(int n_tasks, int nprocs, int rank);
json build_tasks_mpi();
void process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results);
Timer timer; // used to measure the time of the whole process
};
} /* namespace platform */

View File

@ -218,7 +218,7 @@ int main(int argc, char** argv)
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_config.rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_config.n_procs);
grid_search.go_MPI(mpi_config);
grid_search.go_mpi(mpi_config);
MPI_Finalize();
} else {
grid_search.go();