refactor to use in python
This commit is contained in:
parent
d1eaab6408
commit
a60b06e2f2
@ -232,6 +232,11 @@ int main(int argc, char** argv)
|
||||
unsigned int nthreads = std::thread::hardware_concurrency();
|
||||
cout << "Computer has " << nthreads << " cores." << endl;
|
||||
auto metrics = bayesnet::Metrics(network.getSamples(), features, className, network.getClassNumStates());
|
||||
cout << "conditionalEdgeWeight " << endl << metrics.conditionalEdgeWeight() << endl;
|
||||
cout << "conditionalEdgeWeight " << endl;
|
||||
auto conditional = metrics.conditionalEdgeWeights();
|
||||
cout << conditional << endl;
|
||||
long m = features.size() + 1;
|
||||
auto matrix = torch::from_blob(conditional.data(), { m, m });
|
||||
cout << matrix << endl;
|
||||
return 0;
|
||||
}
|
@ -167,6 +167,9 @@ int main()
|
||||
}
|
||||
// Print the resulting 3x3 tensor
|
||||
std::cout << tensor_3x3 << std::endl;
|
||||
vector<int> v = { 1,2,3,4,5 };
|
||||
torch::Tensor t = torch::tensor(v);
|
||||
cout << t << endl;
|
||||
|
||||
|
||||
|
||||
|
@ -1,12 +1,30 @@
|
||||
#include "Metrics.hpp"
|
||||
using namespace std;
|
||||
namespace bayesnet {
|
||||
vector<int> linearize(const vector<vector<int>>& vec_vec)
|
||||
{
|
||||
vector<int> vec;
|
||||
for (const auto& v : vec_vec) {
|
||||
for (auto d : v) {
|
||||
vec.push_back(d);
|
||||
}
|
||||
}
|
||||
return vec;
|
||||
}
|
||||
Metrics::Metrics(torch::Tensor& samples, vector<string>& features, string& className, int classNumStates)
|
||||
: samples(samples)
|
||||
, features(features)
|
||||
, className(className)
|
||||
, classNumStates(classNumStates)
|
||||
{
|
||||
|
||||
}
|
||||
Metrics::Metrics(vector<vector<int>>& vsamples, int m, int n, vector<string>& features, string& className, int classNumStates)
|
||||
: features(features)
|
||||
, className(className)
|
||||
, classNumStates(classNumStates)
|
||||
{
|
||||
samples = torch::from_blob(linearize(vsamples).data(), { m, n });
|
||||
}
|
||||
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
|
||||
{
|
||||
@ -19,7 +37,7 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
torch::Tensor Metrics::conditionalEdgeWeight()
|
||||
vector<float> Metrics::conditionalEdgeWeights()
|
||||
{
|
||||
auto result = vector<double>();
|
||||
auto source = vector<string>(features);
|
||||
@ -54,7 +72,8 @@ namespace bayesnet {
|
||||
matrix[x][y] = result[i];
|
||||
matrix[y][x] = result[i];
|
||||
}
|
||||
return matrix;
|
||||
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
|
||||
return v;
|
||||
}
|
||||
double Metrics::entropy(torch::Tensor& feature)
|
||||
{
|
||||
|
@ -7,7 +7,7 @@ using namespace std;
|
||||
namespace bayesnet {
|
||||
class Metrics {
|
||||
private:
|
||||
torch::Tensor& samples;
|
||||
torch::Tensor samples;
|
||||
vector<string>& features;
|
||||
string& className;
|
||||
int classNumStates;
|
||||
@ -17,7 +17,8 @@ namespace bayesnet {
|
||||
double mutualInformation(torch::Tensor&, torch::Tensor&);
|
||||
public:
|
||||
Metrics(torch::Tensor&, vector<string>&, string&, int);
|
||||
torch::Tensor conditionalEdgeWeight();
|
||||
Metrics(vector<vector<int>>&, int, int, vector<string>&, string&, int);
|
||||
vector<float> conditionalEdgeWeights();
|
||||
};
|
||||
}
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user