Begin Folding

This commit is contained in:
Ricardo Montañana Gómez 2023-07-21 16:07:50 +02:00
parent d8218f9713
commit a2622a4fb6
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
6 changed files with 178 additions and 89 deletions

View File

@ -2,5 +2,6 @@ include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
add_executable(main Experiment.cc platformUtils.cc)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
add_executable(main Experiment.cc Folding.cc platformUtils.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@ -2,7 +2,7 @@
#include <string>
#include <torch/torch.h>
#include <thread>
#include <getopt.h>
#include <argparse/argparse.hpp>
#include "ArffFiles.h"
#include "Network.h"
#include "BayesMetrics.h"
@ -11,71 +11,11 @@
#include "SPODE.h"
#include "AODE.h"
#include "TAN.h"
#include "platformUtils.h"
using namespace std;
/* print a description of all supported options */
void usage(const char* path)
{
/* take only the last portion of the path */
const char* basename = strrchr(path, '/');
basename = basename ? basename + 1 : path;
cout << "usage: " << basename << "[OPTION]" << endl;
cout << " -h, --help\t\t Print this help and exit." << endl;
cout
<< " -f, --file[=FILENAME]\t {diabetes, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}."
<< endl;
cout << " -p, --path[=FILENAME]\t folder where the data files are located, default " << PATH << endl;
cout << " -m, --model={AODE, KDB, SPODE, TAN}\t " << endl;
}
tuple<string, string, string> parse_arguments(int argc, char** argv)
{
string file_name;
string model_name;
string path = PATH;
const vector<struct option> long_options = {
{"help", no_argument, nullptr, 'h'},
{"file", required_argument, nullptr, 'f'},
{"path", required_argument, nullptr, 'p'},
{"model", required_argument, nullptr, 'm'},
{nullptr, no_argument, nullptr, 0}
};
while (true) {
const auto c = getopt_long(argc, argv, "hf:p:m:", long_options.data(), nullptr);
if (c == -1)
break;
switch (c) {
case 'h':
usage(argv[0]);
exit(0);
case 'f':
file_name = string(optarg);
break;
case 'm':
model_name = string(optarg);
break;
case 'p':
path = optarg;
if (path.back() != '/')
path += '/';
break;
case '?':
usage(argv[0]);
exit(1);
default:
abort();
}
}
if (file_name.empty()) {
usage(argv[0]);
exit(1);
}
return make_tuple(file_name, path, model_name);
}
const string PATH = "../../data/";
inline constexpr auto hash_conv(const std::string_view sv)
{
@ -91,9 +31,32 @@ inline constexpr auto operator"" _sh(const char* str, size_t len)
return hash_conv(std::string_view{ str, len });
}
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{
vector<mdlp::labels_t>Xd;
map<string, int> maxes;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
Xd.push_back(xd);
}
return { Xd, maxes };
}
tuple<string, string, string> get_options(int argc, char** argv)
bool file_exists(const std::string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file);
return true;
} else {
return false;
}
}
int main(int argc, char** argv)
{
map<string, bool> datasets = {
{"diabetes", true},
@ -105,35 +68,60 @@ tuple<string, string, string> get_options(int argc, char** argv)
{"liver-disorders", true},
{"mfeat-factors", true},
};
vector <string> models = { "AODE", "KDB", "SPODE", "TAN" };
string file_name;
string path;
string model_name;
tie(file_name, path, model_name) = parse_arguments(argc, argv);
if (datasets.find(file_name) == datasets.end()) {
cout << "Invalid file name: " << file_name << endl;
usage(argv[0]);
auto valid_datasets = vector<string>();
for (auto dataset : datasets) {
valid_datasets.push_back(dataset.first);
}
argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-f", "--file")
.help("Dataset file name")
.action([valid_datasets](const std::string& value) {
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
return value;
}
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
}
);
program.add_argument("-p", "--path")
.help(" folder where the data files are located, default")
.default_value(string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use {AODE, KDB, SPODE, TAN}")
.action([](const std::string& value) {
static const vector<string> choices = { "AODE", "KDB", "SPODE", "TAN" };
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of {AODE, KDB, SPODE, TAN}");
}
);
program.add_argument("--discretize").default_value(false).implicit_value(true);
bool class_last, discretize_dataset;
string model_name, file_name, path, complete_file_name;
try {
program.parse_args(argc, argv);
file_name = program.get<string>("file");
path = program.get<string>("path");
model_name = program.get<string>("model");
discretize_dataset = program.get<bool>("discretize");
complete_file_name = path + file_name + ".arff";
class_last = datasets[file_name];
if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
}
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
if (!file_exists(path + file_name + ".arff")) {
cout << "Data File " << path + file_name + ".arff" << " does not exist" << endl;
usage(argv[0]);
exit(1);
}
if (find(models.begin(), models.end(), model_name) == models.end()) {
cout << "Invalid model name: " << model_name << endl;
usage(argv[0]);
exit(1);
}
return { file_name, path, model_name };
}
int main(int argc, char** argv)
{
string file_name, path, model_name;
tie(file_name, path, model_name) = get_options(argc, argv);
/*
* Begin Processing
*/
auto handler = ArffFiles();
handler.load(path + file_name + ".arff");
handler.load(complete_file_name, class_last);
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();

31
src/Platform/Folding.cc Normal file
View File

@ -0,0 +1,31 @@
#include "Folding.h"
#include <algorithm>
#include <random>
using namespace std;
KFold::KFold(int k, int n, int seed)
{
this->k = k;
this->n = n;
indices = vector<int>(n);
iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
shuffle(indices.begin(), indices.end(), default_random_engine(seed));
}
pair<vector<int>, vector<int>> KFold::getFold(int nFold)
{
if (nFold >= k || nFold < 0) {
throw invalid_argument("nFold (" + to_string(nFold) + ") must be less than k (" + to_string(k) + ")");
}
int nTest = n / k;
auto train = vector<int>();
auto test = vector<int>();
for (int i = 0; i < n; i++) {
if (i >= nTest * nFold && i < nTest * (nFold + 1)) {
test.push_back(indices[i]);
} else {
train.push_back(indices[i]);
}
}
return { train, test };
}

18
src/Platform/Folding.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef FOLDING_H
#define FOLDING_H
#include <vector>
using namespace std;
class KFold {
private:
int k;
int n;
vector<int> indices;
public:
KFold(int k, int n, int seed);
pair<vector<int>, vector<int>> getFold(int);
};
class KStratifiedFold {
};
#endif

BIN
src/Platform/m Executable file

Binary file not shown.

51
src/Platform/main.cpp Normal file
View File

@ -0,0 +1,51 @@
#include "Folding.h"
#include <iostream>
using namespace std;
class A {
private:
int a;
public:
A(int a) : a(a) {}
int getA() { return a; }
};
class B : public A {
private:
int b;
public:
B(int a, int b) : A(a), b(b) {}
int getB() { return b; }
};
class C : public A {
private:
int c;
public:
C(int a, int c) : A(a), c(c) {}
int getC() { return c; }
};
int main()
{
auto fold = KFold(5, 100, 1);
for (int i = 0; i < 5; ++i) {
cout << "Fold: " << i << endl;
auto [train, test] = fold.getFold(i);
cout << "Train: ";
cout << "(" << train.size() << "): ";
for (auto j = 0; j < static_cast<int>(train.size()); j++)
cout << train[j] << ", ";
cout << endl;
cout << "Test: ";
cout << "(" << train.size() << "): ";
for (auto j = 0; j < static_cast<int>(test.size()); j++)
cout << test[j] << ", ";
cout << endl;
cout << "Vector poly" << endl;
auto some = vector<A>();
auto cx = C(5, 4);
auto bx = B(7, 6);
some.push_back(cx);
some.push_back(bx);
for (auto& obj : some) {
cout << "Obj :" << obj.getA() << endl;
}
}
}