TANNew restructured with poor results
This commit is contained in:
parent
64ac8fb4f2
commit
a1c6ab18f3
@ -325,17 +325,17 @@ namespace bayesnet {
|
|||||||
vector<thread> threads;
|
vector<thread> threads;
|
||||||
mutex mtx;
|
mutex mtx;
|
||||||
for (int i = 0; i < classNumStates; ++i) {
|
for (int i = 0; i < classNumStates; ++i) {
|
||||||
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
// threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
||||||
auto completeEvidence = map<string, int>(evidence);
|
auto completeEvidence = map<string, int>(evidence);
|
||||||
completeEvidence[getClassName()] = i;
|
completeEvidence[getClassName()] = i;
|
||||||
double factor = computeFactor(completeEvidence);
|
double factor = computeFactor(completeEvidence);
|
||||||
lock_guard<mutex> lock(mtx);
|
// lock_guard<mutex> lock(mtx);
|
||||||
result[i] = factor;
|
result[i] = factor;
|
||||||
});
|
// });
|
||||||
}
|
|
||||||
for (auto& thread : threads) {
|
|
||||||
thread.join();
|
|
||||||
}
|
}
|
||||||
|
// for (auto& thread : threads) {
|
||||||
|
// thread.join();
|
||||||
|
// }
|
||||||
// Normalize result
|
// Normalize result
|
||||||
double sum = accumulate(result.begin(), result.end(), 0.0);
|
double sum = accumulate(result.begin(), result.end(), 0.0);
|
||||||
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
|
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
|
||||||
|
@ -12,6 +12,7 @@ namespace bayesnet {
|
|||||||
void Proposal::localDiscretizationProposal(map<string, vector<int>>& states, Network& model)
|
void Proposal::localDiscretizationProposal(map<string, vector<int>>& states, Network& model)
|
||||||
{
|
{
|
||||||
// order of local discretization is important. no good 0, 1, 2...
|
// order of local discretization is important. no good 0, 1, 2...
|
||||||
|
// although we rediscretize features after the local discretization of every feature
|
||||||
auto order = model.topological_sort();
|
auto order = model.topological_sort();
|
||||||
auto& nodes = model.getNodes();
|
auto& nodes = model.getNodes();
|
||||||
vector<int> indicesToReDiscretize;
|
vector<int> indicesToReDiscretize;
|
||||||
@ -22,7 +23,7 @@ namespace bayesnet {
|
|||||||
if (nodeParents.size() < 2) continue; // Only has class as parent
|
if (nodeParents.size() < 2) continue; // Only has class as parent
|
||||||
upgrade = true;
|
upgrade = true;
|
||||||
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
|
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
|
||||||
indicesToReDiscretize.push_back(index);
|
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
|
||||||
vector<string> parents;
|
vector<string> parents;
|
||||||
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
|
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
|
||||||
// Remove class as parent as it will be added later
|
// Remove class as parent as it will be added later
|
||||||
@ -30,7 +31,7 @@ namespace bayesnet {
|
|||||||
// Get the indices of the parents
|
// Get the indices of the parents
|
||||||
vector<int> indices;
|
vector<int> indices;
|
||||||
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
|
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
|
||||||
// Now we fit the discretizer of the feature conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
|
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
|
||||||
vector<string> yJoinParents;
|
vector<string> yJoinParents;
|
||||||
transform(yv.begin(), yv.end(), back_inserter(yJoinParents), [&](const auto& p) {return to_string(p); });
|
transform(yv.begin(), yv.end(), back_inserter(yJoinParents), [&](const auto& p) {return to_string(p); });
|
||||||
for (auto idx : indices) {
|
for (auto idx : indices) {
|
||||||
@ -43,19 +44,28 @@ namespace bayesnet {
|
|||||||
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
||||||
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||||
discretizers[feature]->fit(xvf, yxv);
|
discretizers[feature]->fit(xvf, yxv);
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
auto tmp = discretizers[feature]->transform(xvf);
|
||||||
|
Xv[index] = tmp;
|
||||||
|
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||||
|
iota(xStates.begin(), xStates.end(), 0);
|
||||||
|
//Update new states of the feature/node
|
||||||
|
states[feature] = xStates;
|
||||||
}
|
}
|
||||||
if (upgrade) {
|
// if (upgrade) {
|
||||||
// Discretize again X (only the affected indices) with the new fitted discretizers
|
// // Discretize again X (only the affected indices) with the new fitted discretizers
|
||||||
for (auto index : indicesToReDiscretize) {
|
// for (auto index : indicesToReDiscretize) {
|
||||||
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
|
// auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
|
||||||
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
// auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||||
Xv[index] = discretizers[pFeatures[index]]->transform(Xt);
|
// Xv[index] = discretizers[pFeatures[index]]->transform(Xt);
|
||||||
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||||
iota(xStates.begin(), xStates.end(), 0);
|
// iota(xStates.begin(), xStates.end(), 0);
|
||||||
//Update new states of the feature/node
|
// //Update new states of the feature/node
|
||||||
states[pFeatures[index]] = xStates;
|
// states[pFeatures[index]] = xStates;
|
||||||
}
|
// }
|
||||||
}
|
// }
|
||||||
}
|
}
|
||||||
void Proposal::fit_local_discretization(map<string, vector<int>>& states, torch::Tensor& y)
|
void Proposal::fit_local_discretization(map<string, vector<int>>& states, torch::Tensor& y)
|
||||||
{
|
{
|
||||||
|
@ -3,7 +3,6 @@
|
|||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
using namespace std;
|
using namespace std;
|
||||||
TANNew::TANNew() : TAN(), Proposal(TAN::Xv, TAN::yv, TAN::features, TAN::className) {}
|
TANNew::TANNew() : TAN(), Proposal(TAN::Xv, TAN::yv, TAN::features, TAN::className) {}
|
||||||
TANNew::~TANNew() {}
|
|
||||||
TANNew& TANNew::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
TANNew& TANNew::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||||
{
|
{
|
||||||
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||||
@ -17,8 +16,9 @@ namespace bayesnet {
|
|||||||
cout << "TANNew: Fitting model" << endl;
|
cout << "TANNew: Fitting model" << endl;
|
||||||
TAN::fit(TAN::Xv, TAN::yv, TAN::features, TAN::className, states);
|
TAN::fit(TAN::Xv, TAN::yv, TAN::features, TAN::className, states);
|
||||||
cout << "TANNew: Model fitted" << endl;
|
cout << "TANNew: Model fitted" << endl;
|
||||||
//localDiscretizationProposal(states, model);
|
localDiscretizationProposal(states, model);
|
||||||
//addNodes();
|
addNodes();
|
||||||
|
model.fit(TAN::Xv, TAN::yv, features, className);
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
Tensor TANNew::predict(Tensor& X)
|
Tensor TANNew::predict(Tensor& X)
|
||||||
|
@ -9,7 +9,7 @@ namespace bayesnet {
|
|||||||
private:
|
private:
|
||||||
public:
|
public:
|
||||||
TANNew();
|
TANNew();
|
||||||
virtual ~TANNew();
|
virtual ~TANNew() = default;
|
||||||
TANNew& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
TANNew& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||||
vector<string> graph(const string& name = "TAN") override;
|
vector<string> graph(const string& name = "TAN") override;
|
||||||
Tensor predict(Tensor& X) override;
|
Tensor predict(Tensor& X) override;
|
||||||
|
Loading…
Reference in New Issue
Block a user