Fix some mistakes in methods
This commit is contained in:
parent
beadb7465f
commit
9ab4fc7d76
@ -36,7 +36,7 @@ namespace platform {
|
||||
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
||||
{
|
||||
}
|
||||
json GridSearch::getResults()
|
||||
json GridSearch::loadResults()
|
||||
{
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
@ -44,7 +44,7 @@ namespace platform {
|
||||
}
|
||||
return json();
|
||||
}
|
||||
vector<std::string> GridSearch::processDatasets(Datasets& datasets) const
|
||||
vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
|
||||
{
|
||||
// Load datasets
|
||||
auto datasets_names = datasets.getNames();
|
||||
@ -108,9 +108,9 @@ namespace platform {
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto datasets = Datasets(false, Paths::datasets());
|
||||
auto all_datasets = datasets.getNames();
|
||||
auto datasets_names = processDatasets(datasets);
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||
auto dataset = all_datasets[idx_dataset];
|
||||
auto dataset = datasets_names[idx_dataset];
|
||||
for (const auto& seed : config.seeds) {
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||
@ -226,25 +226,25 @@ namespace platform {
|
||||
// Update progress bar
|
||||
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
|
||||
}
|
||||
std::pair<int, int> GridSearch::part_range_mpi(int n_tasks, int nprocs, int rank)
|
||||
{
|
||||
int assigned = 0;
|
||||
int remainder = n_tasks % nprocs;
|
||||
int start = 0;
|
||||
if (rank < remainder) {
|
||||
assigned = n_tasks / nprocs + 1;
|
||||
} else {
|
||||
assigned = n_tasks / nprocs;
|
||||
start = remainder;
|
||||
}
|
||||
start += rank * assigned;
|
||||
int end = start + assigned;
|
||||
if (rank == nprocs - 1) {
|
||||
end = n_tasks;
|
||||
}
|
||||
return { start, end };
|
||||
}
|
||||
void store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||
// std::pair<int, int> GridSearch::part_range_mpi(int n_tasks, int nprocs, int rank)
|
||||
// {
|
||||
// int assigned = 0;
|
||||
// int remainder = n_tasks % nprocs;
|
||||
// int start = 0;
|
||||
// if (rank < remainder) {
|
||||
// assigned = n_tasks / nprocs + 1;
|
||||
// } else {
|
||||
// assigned = n_tasks / nprocs;
|
||||
// start = remainder;
|
||||
// }
|
||||
// start += rank * assigned;
|
||||
// int end = start + assigned;
|
||||
// if (rank == nprocs - 1) {
|
||||
// end = n_tasks;
|
||||
// }
|
||||
// return { start, end };
|
||||
// }
|
||||
json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||
{
|
||||
json json_result = {
|
||||
{ "score", result.score },
|
||||
@ -253,11 +253,16 @@ namespace platform {
|
||||
{ "time", result.time },
|
||||
{ "dataset", result.idx_dataset }
|
||||
};
|
||||
std::cout << "x Storing result for dataset " << result.idx_dataset << " from " << result.idx_combination << ::endl;
|
||||
std::cout << json_result.dump() << std::endl;
|
||||
std::cout << string(80, '-') << std::endl;
|
||||
auto name = names[result.idx_dataset];
|
||||
if (!results.contains(name)) {
|
||||
results[name] = json::array();
|
||||
}
|
||||
results[name].push_back(json_result);
|
||||
std::cout << results.dump() << std::endl;
|
||||
return results;
|
||||
}
|
||||
json producer(json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
@ -268,21 +273,27 @@ namespace platform {
|
||||
auto names = datasets.getNames();
|
||||
for (int i = 0; i < num_tasks; ++i) {
|
||||
MPI_Status status;
|
||||
std::cout << "+ Producer waiting for result." << std::endl;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
std::cout << "+ Producer received result from " << status.MPI_SOURCE << std::endl;
|
||||
store_result(names, result, results);
|
||||
}
|
||||
std::cout << "+ Producer sending task " << i << " to " << status.MPI_SOURCE << std::endl;
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||
}
|
||||
// Send end message to all workers
|
||||
for (int i = 0; i < config_mpi.n_procs; ++i) {
|
||||
// Send end message to all workers but the manager
|
||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||
MPI_Status status;
|
||||
std::cout << "+ Producer waiting for result (closing)." << std::endl;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
std::cout << "+ Producer received result from " << status.MPI_SOURCE << " (closing)" << std::endl;
|
||||
store_result(names, result, results);
|
||||
}
|
||||
std::cout << "+ Producer sending end signal to " << status.MPI_SOURCE << std::endl;
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||
}
|
||||
return results;
|
||||
@ -295,10 +306,13 @@ namespace platform {
|
||||
//
|
||||
// Select the best result of the computed outer folds
|
||||
//
|
||||
for (const auto& result : results.items()) {
|
||||
std::cout << "--- Selecting best results of the outer folds ---" << std::endl;
|
||||
std::cout << all_results.dump() << std::endl;
|
||||
for (const auto& result : all_results.items()) {
|
||||
// each result has the results of all the outer folds as each one were a different task
|
||||
double best_score = 0.0;
|
||||
json best;
|
||||
std::cout << " Processing " << result.key() << std::endl;
|
||||
for (const auto& result_fold : result.value()) {
|
||||
double score = result_fold["score"].get<double>();
|
||||
if (score > best_score) {
|
||||
@ -327,14 +341,17 @@ namespace platform {
|
||||
int task;
|
||||
while (true) {
|
||||
MPI_Status status;
|
||||
std::cout << "- Consumer nº " << config_mpi.rank << " waiting for task." << std::endl;
|
||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_END) {
|
||||
break;
|
||||
}
|
||||
// Process task
|
||||
std::cout << " - Consumer nº " << config_mpi.rank << " processing task " << task << std::endl;
|
||||
process_task_mpi_consumer(config, config_mpi, tasks, task, datasets, &result);
|
||||
// Send result to producer
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||
std::cout << " - Consumer nº " << config_mpi.rank << " sent task " << task << std::endl;
|
||||
}
|
||||
}
|
||||
void GridSearch::go_producer_consumer(struct ConfigMPI& config_mpi)
|
||||
@ -409,419 +426,419 @@ namespace platform {
|
||||
//
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
auto all_results = producer(tasks, config_mpi, MPI_Result);
|
||||
auto results = select_best_results_folds(all_results, config.model);
|
||||
json all_results = producer(tasks, config_mpi, MPI_Result);
|
||||
json results = select_best_results_folds(all_results, config.model);
|
||||
save(results);
|
||||
} else {
|
||||
consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
||||
}
|
||||
}
|
||||
void GridSearch::go_mpi(struct ConfigMPI& config_mpi)
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset,
|
||||
* "seed": # of seed to use,
|
||||
* "Fold": # of fold to process
|
||||
* }
|
||||
*
|
||||
* The overall process consists in these steps:
|
||||
* 1. Manager will broadcast the tasks to all the processes
|
||||
* 1.1 Broadcast the number of tasks
|
||||
* 1.2 Broadcast the length of the following string
|
||||
* 1.2 Broadcast the tasks as a char* string
|
||||
* 2. Workers will receive the tasks and start the process
|
||||
* 2.1 A method will tell each worker the range of tasks to process
|
||||
* 2.2 Each worker will process the tasks and generate the best score for each task
|
||||
* 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
|
||||
* 3.1 Obtain the maximum size of the results message of all the workers
|
||||
* 3.2 Gather all the results from the workers into the manager
|
||||
* 3.3 Compile the results from all the workers
|
||||
* 3.4 Filter the best hyperparameters for each dataset
|
||||
*/
|
||||
char* msg;
|
||||
int tasks_size;
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
timer.start();
|
||||
auto tasks = build_tasks_mpi();
|
||||
auto tasks_str = tasks.dump();
|
||||
tasks_size = tasks_str.size();
|
||||
msg = new char[tasks_size + 1];
|
||||
strcpy(msg, tasks_str.c_str());
|
||||
}
|
||||
//
|
||||
// 1. Manager will broadcast the tasks to all the processes
|
||||
//
|
||||
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
||||
if (config_mpi.rank != config_mpi.manager) {
|
||||
msg = new char[tasks_size + 1];
|
||||
}
|
||||
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
json tasks = json::parse(msg);
|
||||
delete[] msg;
|
||||
//
|
||||
// 2. All Workers will receive the tasks and start the process
|
||||
//
|
||||
int num_tasks = tasks.size();
|
||||
// 2.1 A method will tell each worker the range of tasks to process
|
||||
auto [start, end] = part_range_mpi(num_tasks, config_mpi.n_procs, config_mpi.rank);
|
||||
// 2.2 Each worker will process the tasks and return the best scores obtained
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
json results;
|
||||
for (int i = start; i < end; ++i) {
|
||||
// Process task
|
||||
process_task_mpi(config_mpi, tasks[i], datasets, results);
|
||||
}
|
||||
int size = results.dump().size() + 1;
|
||||
int max_size = 0;
|
||||
//
|
||||
// 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
|
||||
//
|
||||
//3.1 Obtain the maximum size of the results message of all the workers
|
||||
MPI_Allreduce(&size, &max_size, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
|
||||
// Assign the memory to the message and initialize it to 0s
|
||||
char* total = NULL;
|
||||
msg = new char[max_size];
|
||||
strncpy(msg, results.dump().c_str(), size);
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
total = new char[max_size * config_mpi.n_procs];
|
||||
}
|
||||
// 3.2 Gather all the results from the workers into the manager
|
||||
MPI_Gather(msg, max_size, MPI_CHAR, total, max_size, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
delete[] msg;
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
std::cout << Colors::RESET() << "|" << std::endl;
|
||||
json total_results;
|
||||
json best_results;
|
||||
// 3.3 Compile the results from all the workers
|
||||
for (int i = 0; i < config_mpi.n_procs; ++i) {
|
||||
json partial_results = json::parse(total + i * max_size);
|
||||
for (auto& [dataset, folds] : partial_results.items()) {
|
||||
for (auto& [fold, result] : folds.items()) {
|
||||
total_results[dataset][fold] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
delete[] total;
|
||||
// 3.4 Filter the best hyperparameters for each dataset
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
for (auto& [dataset, folds] : total_results.items()) {
|
||||
double best_score = 0.0;
|
||||
double duration = 0.0;
|
||||
json best_hyper;
|
||||
for (auto& [fold, result] : folds.items()) {
|
||||
duration += result["duration"].get<double>();
|
||||
if (result["score"] > best_score) {
|
||||
best_score = result["score"];
|
||||
best_hyper = result["hyperparameters"];
|
||||
}
|
||||
}
|
||||
auto timer = Timer();
|
||||
json result = {
|
||||
{ "score", best_score },
|
||||
{ "hyperparameters", best_hyper },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer.translate2String(duration) }
|
||||
};
|
||||
best_results[dataset] = result;
|
||||
}
|
||||
save(best_results);
|
||||
}
|
||||
}
|
||||
void GridSearch::go()
|
||||
{
|
||||
timer.start();
|
||||
auto grid_type = config.nested == 0 ? "Single" : "Nested";
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
auto datasets_names = processDatasets(datasets);
|
||||
json results = initializeResults();
|
||||
std::cout << "***************** Starting " << grid_type << " Gridsearch *****************" << std::endl;
|
||||
std::cout << "input file=" << Paths::grid_input(config.model) << std::endl;
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
Timer timer_dataset;
|
||||
double bestScore = 0;
|
||||
json bestHyperparameters;
|
||||
for (const auto& dataset : datasets_names) {
|
||||
if (!config.quiet)
|
||||
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
timer_dataset.start();
|
||||
if (config.nested == 0)
|
||||
// for dataset // for hyperparameters // for seed // for fold
|
||||
tie(bestScore, bestHyperparameters) = processFileSingle(dataset, datasets, combinations);
|
||||
else
|
||||
// for dataset // for seed // for fold // for hyperparameters // for nested fold
|
||||
tie(bestScore, bestHyperparameters) = processFileNested(dataset, datasets, combinations);
|
||||
if (!config.quiet) {
|
||||
std::cout << "end." << " Score: " << Colors::IBLUE() << setw(9) << setprecision(7) << fixed
|
||||
<< bestScore << Colors::BLUE() << " [" << bestHyperparameters.dump() << "]"
|
||||
<< Colors::RESET() << ::endl;
|
||||
}
|
||||
json result = {
|
||||
{ "score", bestScore },
|
||||
{ "hyperparameters", bestHyperparameters },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer_dataset.getDurationString() }
|
||||
};
|
||||
results[dataset] = result;
|
||||
// Save partial results
|
||||
save(results);
|
||||
}
|
||||
// Save final results
|
||||
save(results);
|
||||
std::cout << "***************** Ending " << grid_type << " Gridsearch *******************" << std::endl;
|
||||
}
|
||||
pair<double, json> GridSearch::processFileSingle(std::string fileName, Datasets& datasets, vector<json>& combinations)
|
||||
{
|
||||
int num = 0;
|
||||
double bestScore = 0.0;
|
||||
json bestHyperparameters;
|
||||
auto totalComb = combinations.size();
|
||||
for (const auto& hyperparam_line : combinations) {
|
||||
if (!config.quiet)
|
||||
showProgressComb(++num, config.n_folds, totalComb, Colors::CYAN());
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
double totalScore = 0.0;
|
||||
int numItems = 0;
|
||||
for (const auto& seed : config.seeds) {
|
||||
if (!config.quiet)
|
||||
std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||
Fold* fold;
|
||||
if (config.stratified)
|
||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, fileName);
|
||||
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
// Train model
|
||||
if (!config.quiet)
|
||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
// Test model
|
||||
if (!config.quiet)
|
||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
totalScore += clf->score(X_test, y_test);
|
||||
numItems++;
|
||||
if (!config.quiet)
|
||||
std::cout << "\b\b\b, \b" << flush;
|
||||
}
|
||||
delete fold;
|
||||
}
|
||||
double score = numItems == 0 ? 0.0 : totalScore / numItems;
|
||||
if (score > bestScore) {
|
||||
bestScore = score;
|
||||
bestHyperparameters = hyperparam_line;
|
||||
}
|
||||
}
|
||||
return { bestScore, bestHyperparameters };
|
||||
}
|
||||
pair<double, json> GridSearch::processFileNested(std::string fileName, Datasets& datasets, vector<json>& combinations)
|
||||
{
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
int spcs_combinations = int(log(combinations.size()) / log(10)) + 1;
|
||||
double goatScore = 0.0;
|
||||
json goatHyperparameters;
|
||||
// for dataset // for seed // for fold // for hyperparameters // for nested fold
|
||||
for (const auto& seed : config.seeds) {
|
||||
Fold* fold;
|
||||
if (config.stratified)
|
||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
double bestScore = 0.0;
|
||||
json bestHyperparameters;
|
||||
std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
||||
if (!config.quiet)
|
||||
std::cout << Colors::GREEN() << nfold + 1 << " " << flush;
|
||||
// First level fold
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
auto num = 0;
|
||||
json result_fold;
|
||||
double hypScore = 0.0;
|
||||
double bestHypScore = 0.0;
|
||||
json bestHypHyperparameters;
|
||||
for (const auto& hyperparam_line : combinations) {
|
||||
std::cout << "[" << setw(spcs_combinations) << ++num << "/" << setw(spcs_combinations)
|
||||
<< combinations.size() << "] " << std::flush;
|
||||
Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
// Nested level fold
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nexted_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
// Build Classifier with selected hyperparameters
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, fileName);
|
||||
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||
// Train model
|
||||
if (!config.quiet)
|
||||
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "a");
|
||||
clf->fit(X_nexted_train, y_nested_train, features, className, states);
|
||||
// Test model
|
||||
if (!config.quiet)
|
||||
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "b");
|
||||
hypScore += clf->score(X_nested_test, y_nested_test);
|
||||
if (!config.quiet)
|
||||
std::cout << "\b\b\b, \b" << flush;
|
||||
}
|
||||
int magic = 3 * config.nested + 2 * spcs_combinations + 4;
|
||||
std::cout << string(magic, '\b') << string(magic, ' ') << string(magic, '\b') << flush;
|
||||
delete nested_fold;
|
||||
hypScore /= config.nested;
|
||||
if (hypScore > bestHypScore) {
|
||||
bestHypScore = hypScore;
|
||||
bestHypHyperparameters = hyperparam_line;
|
||||
}
|
||||
}
|
||||
// Build Classifier with selected hyperparameters
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
clf->setHyperparameters(bestHypHyperparameters);
|
||||
// Train model
|
||||
if (!config.quiet)
|
||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
// Test model
|
||||
if (!config.quiet)
|
||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
double score = clf->score(X_test, y_test);
|
||||
if (!config.quiet)
|
||||
std::cout << string(2 * config.nested - 1, '\b') << "," << string(2 * config.nested, ' ') << string(2 * config.nested - 1, '\b') << flush;
|
||||
if (score > bestScore) {
|
||||
bestScore = score;
|
||||
bestHyperparameters = bestHypHyperparameters;
|
||||
}
|
||||
}
|
||||
if (bestScore > goatScore) {
|
||||
goatScore = bestScore;
|
||||
goatHyperparameters = bestHyperparameters;
|
||||
}
|
||||
delete fold;
|
||||
}
|
||||
return { goatScore, goatHyperparameters };
|
||||
}
|
||||
void GridSearch::process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results)
|
||||
{
|
||||
// Process the task and store the result in the results json
|
||||
Timer timer;
|
||||
timer.start();
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto dataset = task["dataset"].get<std::string>();
|
||||
auto seed = task["seed"].get<int>();
|
||||
auto n_fold = task["fold"].get<int>();
|
||||
// Generate the hyperparamters combinations
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
auto [X, y] = datasets.getTensors(dataset);
|
||||
auto states = datasets.getStates(dataset);
|
||||
auto features = datasets.getFeatures(dataset);
|
||||
auto className = datasets.getClassName(dataset);
|
||||
//
|
||||
// Start working on task
|
||||
//
|
||||
Fold* fold;
|
||||
if (config.stratified)
|
||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
auto [train, test] = fold->getFold(n_fold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
auto num = 0;
|
||||
double best_fold_score = 0.0;
|
||||
json best_fold_hyper;
|
||||
for (const auto& hyperparam_line : combinations) {
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
||||
double score = 0.0;
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
// Nested level fold
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
// Build Classifier with selected hyperparameters
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset);
|
||||
clf->setHyperparameters(hyperparameters.get(dataset));
|
||||
// Train model
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states);
|
||||
// Test model
|
||||
score += clf->score(X_nested_test, y_nested_test);
|
||||
}
|
||||
delete nested_fold;
|
||||
score /= config.nested;
|
||||
if (score > best_fold_score) {
|
||||
best_fold_score = score;
|
||||
best_fold_hyper = hyperparam_line;
|
||||
}
|
||||
}
|
||||
delete fold;
|
||||
// Build Classifier with the best hyperparameters to obtain the best score
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset);
|
||||
clf->setHyperparameters(best_fold_hyper);
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
best_fold_score = clf->score(X_test, y_test);
|
||||
// Save results
|
||||
results[dataset][std::to_string(n_fold)]["score"] = best_fold_score;
|
||||
results[dataset][std::to_string(n_fold)]["hyperparameters"] = best_fold_hyper;
|
||||
results[dataset][std::to_string(n_fold)]["seed"] = seed;
|
||||
results[dataset][std::to_string(n_fold)]["duration"] = timer.getDuration();
|
||||
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
|
||||
}
|
||||
// void GridSearch::go_mpi(struct ConfigMPI& config_mpi)
|
||||
// {
|
||||
// /*
|
||||
// * Each task is a json object with the following structure:
|
||||
// * {
|
||||
// * "dataset": "dataset_name",
|
||||
// * "seed": # of seed to use,
|
||||
// * "model": "model_name",
|
||||
// * "Fold": # of fold to process
|
||||
// * }
|
||||
// *
|
||||
// * The overall process consists in these steps:
|
||||
// * 1. Manager will broadcast the tasks to all the processes
|
||||
// * 1.1 Broadcast the number of tasks
|
||||
// * 1.2 Broadcast the length of the following string
|
||||
// * 1.2 Broadcast the tasks as a char* string
|
||||
// * 2. Workers will receive the tasks and start the process
|
||||
// * 2.1 A method will tell each worker the range of tasks to process
|
||||
// * 2.2 Each worker will process the tasks and generate the best score for each task
|
||||
// * 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
|
||||
// * 3.1 Obtain the maximum size of the results message of all the workers
|
||||
// * 3.2 Gather all the results from the workers into the manager
|
||||
// * 3.3 Compile the results from all the workers
|
||||
// * 3.4 Filter the best hyperparameters for each dataset
|
||||
// */
|
||||
// char* msg;
|
||||
// int tasks_size;
|
||||
// if (config_mpi.rank == config_mpi.manager) {
|
||||
// timer.start();
|
||||
// auto tasks = build_tasks_mpi();
|
||||
// auto tasks_str = tasks.dump();
|
||||
// tasks_size = tasks_str.size();
|
||||
// msg = new char[tasks_size + 1];
|
||||
// strcpy(msg, tasks_str.c_str());
|
||||
// }
|
||||
// //
|
||||
// // 1. Manager will broadcast the tasks to all the processes
|
||||
// //
|
||||
// MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
||||
// if (config_mpi.rank != config_mpi.manager) {
|
||||
// msg = new char[tasks_size + 1];
|
||||
// }
|
||||
// MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
// json tasks = json::parse(msg);
|
||||
// delete[] msg;
|
||||
// //
|
||||
// // 2. All Workers will receive the tasks and start the process
|
||||
// //
|
||||
// int num_tasks = tasks.size();
|
||||
// // 2.1 A method will tell each worker the range of tasks to process
|
||||
// auto [start, end] = part_range_mpi(num_tasks, config_mpi.n_procs, config_mpi.rank);
|
||||
// // 2.2 Each worker will process the tasks and return the best scores obtained
|
||||
// auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
// json results;
|
||||
// for (int i = start; i < end; ++i) {
|
||||
// // Process task
|
||||
// process_task_mpi(config_mpi, tasks[i], datasets, results);
|
||||
// }
|
||||
// int size = results.dump().size() + 1;
|
||||
// int max_size = 0;
|
||||
// //
|
||||
// // 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
|
||||
// //
|
||||
// //3.1 Obtain the maximum size of the results message of all the workers
|
||||
// MPI_Allreduce(&size, &max_size, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
|
||||
// // Assign the memory to the message and initialize it to 0s
|
||||
// char* total = NULL;
|
||||
// msg = new char[max_size];
|
||||
// strncpy(msg, results.dump().c_str(), size);
|
||||
// if (config_mpi.rank == config_mpi.manager) {
|
||||
// total = new char[max_size * config_mpi.n_procs];
|
||||
// }
|
||||
// // 3.2 Gather all the results from the workers into the manager
|
||||
// MPI_Gather(msg, max_size, MPI_CHAR, total, max_size, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
// delete[] msg;
|
||||
// if (config_mpi.rank == config_mpi.manager) {
|
||||
// std::cout << Colors::RESET() << "|" << std::endl;
|
||||
// json total_results;
|
||||
// json best_results;
|
||||
// // 3.3 Compile the results from all the workers
|
||||
// for (int i = 0; i < config_mpi.n_procs; ++i) {
|
||||
// json partial_results = json::parse(total + i * max_size);
|
||||
// for (auto& [dataset, folds] : partial_results.items()) {
|
||||
// for (auto& [fold, result] : folds.items()) {
|
||||
// total_results[dataset][fold] = result;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// delete[] total;
|
||||
// // 3.4 Filter the best hyperparameters for each dataset
|
||||
// auto grid = GridData(Paths::grid_input(config.model));
|
||||
// for (auto& [dataset, folds] : total_results.items()) {
|
||||
// double best_score = 0.0;
|
||||
// double duration = 0.0;
|
||||
// json best_hyper;
|
||||
// for (auto& [fold, result] : folds.items()) {
|
||||
// duration += result["duration"].get<double>();
|
||||
// if (result["score"] > best_score) {
|
||||
// best_score = result["score"];
|
||||
// best_hyper = result["hyperparameters"];
|
||||
// }
|
||||
// }
|
||||
// auto timer = Timer();
|
||||
// json result = {
|
||||
// { "score", best_score },
|
||||
// { "hyperparameters", best_hyper },
|
||||
// { "date", get_date() + " " + get_time() },
|
||||
// { "grid", grid.getInputGrid(dataset) },
|
||||
// { "duration", timer.translate2String(duration) }
|
||||
// };
|
||||
// best_results[dataset] = result;
|
||||
// }
|
||||
// save(best_results);
|
||||
// }
|
||||
// }
|
||||
// void GridSearch::go()
|
||||
// {
|
||||
// timer.start();
|
||||
// auto grid_type = config.nested == 0 ? "Single" : "Nested";
|
||||
// auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
// auto datasets_names = processDatasets(datasets);
|
||||
// json results = initializeResults();
|
||||
// std::cout << "***************** Starting " << grid_type << " Gridsearch *****************" << std::endl;
|
||||
// std::cout << "input file=" << Paths::grid_input(config.model) << std::endl;
|
||||
// auto grid = GridData(Paths::grid_input(config.model));
|
||||
// Timer timer_dataset;
|
||||
// double bestScore = 0;
|
||||
// json bestHyperparameters;
|
||||
// for (const auto& dataset : datasets_names) {
|
||||
// if (!config.quiet)
|
||||
// std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
|
||||
// auto combinations = grid.getGrid(dataset);
|
||||
// timer_dataset.start();
|
||||
// if (config.nested == 0)
|
||||
// // for dataset // for hyperparameters // for seed // for fold
|
||||
// tie(bestScore, bestHyperparameters) = processFileSingle(dataset, datasets, combinations);
|
||||
// else
|
||||
// // for dataset // for seed // for fold // for hyperparameters // for nested fold
|
||||
// tie(bestScore, bestHyperparameters) = processFileNested(dataset, datasets, combinations);
|
||||
// if (!config.quiet) {
|
||||
// std::cout << "end." << " Score: " << Colors::IBLUE() << setw(9) << setprecision(7) << fixed
|
||||
// << bestScore << Colors::BLUE() << " [" << bestHyperparameters.dump() << "]"
|
||||
// << Colors::RESET() << ::endl;
|
||||
// }
|
||||
// json result = {
|
||||
// { "score", bestScore },
|
||||
// { "hyperparameters", bestHyperparameters },
|
||||
// { "date", get_date() + " " + get_time() },
|
||||
// { "grid", grid.getInputGrid(dataset) },
|
||||
// { "duration", timer_dataset.getDurationString() }
|
||||
// };
|
||||
// results[dataset] = result;
|
||||
// // Save partial results
|
||||
// save(results);
|
||||
// }
|
||||
// // Save final results
|
||||
// save(results);
|
||||
// std::cout << "***************** Ending " << grid_type << " Gridsearch *******************" << std::endl;
|
||||
// }
|
||||
// pair<double, json> GridSearch::processFileSingle(std::string fileName, Datasets& datasets, vector<json>& combinations)
|
||||
// {
|
||||
// int num = 0;
|
||||
// double bestScore = 0.0;
|
||||
// json bestHyperparameters;
|
||||
// auto totalComb = combinations.size();
|
||||
// for (const auto& hyperparam_line : combinations) {
|
||||
// if (!config.quiet)
|
||||
// showProgressComb(++num, config.n_folds, totalComb, Colors::CYAN());
|
||||
// auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
// // Get dataset
|
||||
// auto [X, y] = datasets.getTensors(fileName);
|
||||
// auto states = datasets.getStates(fileName);
|
||||
// auto features = datasets.getFeatures(fileName);
|
||||
// auto className = datasets.getClassName(fileName);
|
||||
// double totalScore = 0.0;
|
||||
// int numItems = 0;
|
||||
// for (const auto& seed : config.seeds) {
|
||||
// if (!config.quiet)
|
||||
// std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||
// Fold* fold;
|
||||
// if (config.stratified)
|
||||
// fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
// else
|
||||
// fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
// for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
||||
// auto clf = Models::instance()->create(config.model);
|
||||
// auto valid = clf->getValidHyperparameters();
|
||||
// hyperparameters.check(valid, fileName);
|
||||
// clf->setHyperparameters(hyperparameters.get(fileName));
|
||||
// auto [train, test] = fold->getFold(nfold);
|
||||
// auto train_t = torch::tensor(train);
|
||||
// auto test_t = torch::tensor(test);
|
||||
// auto X_train = X.index({ "...", train_t });
|
||||
// auto y_train = y.index({ train_t });
|
||||
// auto X_test = X.index({ "...", test_t });
|
||||
// auto y_test = y.index({ test_t });
|
||||
// // Train model
|
||||
// if (!config.quiet)
|
||||
// showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
// clf->fit(X_train, y_train, features, className, states);
|
||||
// // Test model
|
||||
// if (!config.quiet)
|
||||
// showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
// totalScore += clf->score(X_test, y_test);
|
||||
// numItems++;
|
||||
// if (!config.quiet)
|
||||
// std::cout << "\b\b\b, \b" << flush;
|
||||
// }
|
||||
// delete fold;
|
||||
// }
|
||||
// double score = numItems == 0 ? 0.0 : totalScore / numItems;
|
||||
// if (score > bestScore) {
|
||||
// bestScore = score;
|
||||
// bestHyperparameters = hyperparam_line;
|
||||
// }
|
||||
// }
|
||||
// return { bestScore, bestHyperparameters };
|
||||
// }
|
||||
// pair<double, json> GridSearch::processFileNested(std::string fileName, Datasets& datasets, vector<json>& combinations)
|
||||
// {
|
||||
// // Get dataset
|
||||
// auto [X, y] = datasets.getTensors(fileName);
|
||||
// auto states = datasets.getStates(fileName);
|
||||
// auto features = datasets.getFeatures(fileName);
|
||||
// auto className = datasets.getClassName(fileName);
|
||||
// int spcs_combinations = int(log(combinations.size()) / log(10)) + 1;
|
||||
// double goatScore = 0.0;
|
||||
// json goatHyperparameters;
|
||||
// // for dataset // for seed // for fold // for hyperparameters // for nested fold
|
||||
// for (const auto& seed : config.seeds) {
|
||||
// Fold* fold;
|
||||
// if (config.stratified)
|
||||
// fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
// else
|
||||
// fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
// double bestScore = 0.0;
|
||||
// json bestHyperparameters;
|
||||
// std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||
// for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
||||
// if (!config.quiet)
|
||||
// std::cout << Colors::GREEN() << nfold + 1 << " " << flush;
|
||||
// // First level fold
|
||||
// auto [train, test] = fold->getFold(nfold);
|
||||
// auto train_t = torch::tensor(train);
|
||||
// auto test_t = torch::tensor(test);
|
||||
// auto X_train = X.index({ "...", train_t });
|
||||
// auto y_train = y.index({ train_t });
|
||||
// auto X_test = X.index({ "...", test_t });
|
||||
// auto y_test = y.index({ test_t });
|
||||
// auto num = 0;
|
||||
// json result_fold;
|
||||
// double hypScore = 0.0;
|
||||
// double bestHypScore = 0.0;
|
||||
// json bestHypHyperparameters;
|
||||
// for (const auto& hyperparam_line : combinations) {
|
||||
// std::cout << "[" << setw(spcs_combinations) << ++num << "/" << setw(spcs_combinations)
|
||||
// << combinations.size() << "] " << std::flush;
|
||||
// Fold* nested_fold;
|
||||
// if (config.stratified)
|
||||
// nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
||||
// else
|
||||
// nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
||||
// for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
// // Nested level fold
|
||||
// auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
// auto train_nested_t = torch::tensor(train_nested);
|
||||
// auto test_nested_t = torch::tensor(test_nested);
|
||||
// auto X_nexted_train = X_train.index({ "...", train_nested_t });
|
||||
// auto y_nested_train = y_train.index({ train_nested_t });
|
||||
// auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
// auto y_nested_test = y_train.index({ test_nested_t });
|
||||
// // Build Classifier with selected hyperparameters
|
||||
// auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
// auto clf = Models::instance()->create(config.model);
|
||||
// auto valid = clf->getValidHyperparameters();
|
||||
// hyperparameters.check(valid, fileName);
|
||||
// clf->setHyperparameters(hyperparameters.get(fileName));
|
||||
// // Train model
|
||||
// if (!config.quiet)
|
||||
// showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "a");
|
||||
// clf->fit(X_nexted_train, y_nested_train, features, className, states);
|
||||
// // Test model
|
||||
// if (!config.quiet)
|
||||
// showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "b");
|
||||
// hypScore += clf->score(X_nested_test, y_nested_test);
|
||||
// if (!config.quiet)
|
||||
// std::cout << "\b\b\b, \b" << flush;
|
||||
// }
|
||||
// int magic = 3 * config.nested + 2 * spcs_combinations + 4;
|
||||
// std::cout << string(magic, '\b') << string(magic, ' ') << string(magic, '\b') << flush;
|
||||
// delete nested_fold;
|
||||
// hypScore /= config.nested;
|
||||
// if (hypScore > bestHypScore) {
|
||||
// bestHypScore = hypScore;
|
||||
// bestHypHyperparameters = hyperparam_line;
|
||||
// }
|
||||
// }
|
||||
// // Build Classifier with selected hyperparameters
|
||||
// auto clf = Models::instance()->create(config.model);
|
||||
// clf->setHyperparameters(bestHypHyperparameters);
|
||||
// // Train model
|
||||
// if (!config.quiet)
|
||||
// showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
// clf->fit(X_train, y_train, features, className, states);
|
||||
// // Test model
|
||||
// if (!config.quiet)
|
||||
// showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
// double score = clf->score(X_test, y_test);
|
||||
// if (!config.quiet)
|
||||
// std::cout << string(2 * config.nested - 1, '\b') << "," << string(2 * config.nested, ' ') << string(2 * config.nested - 1, '\b') << flush;
|
||||
// if (score > bestScore) {
|
||||
// bestScore = score;
|
||||
// bestHyperparameters = bestHypHyperparameters;
|
||||
// }
|
||||
// }
|
||||
// if (bestScore > goatScore) {
|
||||
// goatScore = bestScore;
|
||||
// goatHyperparameters = bestHyperparameters;
|
||||
// }
|
||||
// delete fold;
|
||||
// }
|
||||
// return { goatScore, goatHyperparameters };
|
||||
// }
|
||||
// void GridSearch::process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results)
|
||||
// {
|
||||
// // Process the task and store the result in the results json
|
||||
// Timer timer;
|
||||
// timer.start();
|
||||
// auto grid = GridData(Paths::grid_input(config.model));
|
||||
// auto dataset = task["dataset"].get<std::string>();
|
||||
// auto seed = task["seed"].get<int>();
|
||||
// auto n_fold = task["fold"].get<int>();
|
||||
// // Generate the hyperparamters combinations
|
||||
// auto combinations = grid.getGrid(dataset);
|
||||
// auto [X, y] = datasets.getTensors(dataset);
|
||||
// auto states = datasets.getStates(dataset);
|
||||
// auto features = datasets.getFeatures(dataset);
|
||||
// auto className = datasets.getClassName(dataset);
|
||||
// //
|
||||
// // Start working on task
|
||||
// //
|
||||
// Fold* fold;
|
||||
// if (config.stratified)
|
||||
// fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
// else
|
||||
// fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
// auto [train, test] = fold->getFold(n_fold);
|
||||
// auto train_t = torch::tensor(train);
|
||||
// auto test_t = torch::tensor(test);
|
||||
// auto X_train = X.index({ "...", train_t });
|
||||
// auto y_train = y.index({ train_t });
|
||||
// auto X_test = X.index({ "...", test_t });
|
||||
// auto y_test = y.index({ test_t });
|
||||
// auto num = 0;
|
||||
// double best_fold_score = 0.0;
|
||||
// json best_fold_hyper;
|
||||
// for (const auto& hyperparam_line : combinations) {
|
||||
// auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
// Fold* nested_fold;
|
||||
// if (config.stratified)
|
||||
// nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
||||
// else
|
||||
// nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
||||
// double score = 0.0;
|
||||
// for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
// // Nested level fold
|
||||
// auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
// auto train_nested_t = torch::tensor(train_nested);
|
||||
// auto test_nested_t = torch::tensor(test_nested);
|
||||
// auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||
// auto y_nested_train = y_train.index({ train_nested_t });
|
||||
// auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
// auto y_nested_test = y_train.index({ test_nested_t });
|
||||
// // Build Classifier with selected hyperparameters
|
||||
// auto clf = Models::instance()->create(config.model);
|
||||
// auto valid = clf->getValidHyperparameters();
|
||||
// hyperparameters.check(valid, dataset);
|
||||
// clf->setHyperparameters(hyperparameters.get(dataset));
|
||||
// // Train model
|
||||
// clf->fit(X_nested_train, y_nested_train, features, className, states);
|
||||
// // Test model
|
||||
// score += clf->score(X_nested_test, y_nested_test);
|
||||
// }
|
||||
// delete nested_fold;
|
||||
// score /= config.nested;
|
||||
// if (score > best_fold_score) {
|
||||
// best_fold_score = score;
|
||||
// best_fold_hyper = hyperparam_line;
|
||||
// }
|
||||
// }
|
||||
// delete fold;
|
||||
// // Build Classifier with the best hyperparameters to obtain the best score
|
||||
// auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
// auto clf = Models::instance()->create(config.model);
|
||||
// auto valid = clf->getValidHyperparameters();
|
||||
// hyperparameters.check(valid, dataset);
|
||||
// clf->setHyperparameters(best_fold_hyper);
|
||||
// clf->fit(X_train, y_train, features, className, states);
|
||||
// best_fold_score = clf->score(X_test, y_test);
|
||||
// // Save results
|
||||
// results[dataset][std::to_string(n_fold)]["score"] = best_fold_score;
|
||||
// results[dataset][std::to_string(n_fold)]["hyperparameters"] = best_fold_hyper;
|
||||
// results[dataset][std::to_string(n_fold)]["seed"] = seed;
|
||||
// results[dataset][std::to_string(n_fold)]["duration"] = timer.getDuration();
|
||||
// std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
|
||||
// }
|
||||
json GridSearch::initializeResults()
|
||||
{
|
||||
// Load previous results
|
||||
|
@ -44,22 +44,22 @@ namespace platform {
|
||||
class GridSearch {
|
||||
public:
|
||||
explicit GridSearch(struct ConfigGrid& config);
|
||||
void go();
|
||||
void go_mpi(struct ConfigMPI& config_mpi);
|
||||
// void go();
|
||||
// void go_mpi(struct ConfigMPI& config_mpi);
|
||||
void go_producer_consumer(struct ConfigMPI& config_mpi);
|
||||
~GridSearch() = default;
|
||||
json getResults();
|
||||
json loadResults();
|
||||
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
||||
private:
|
||||
void save(json& results);
|
||||
json initializeResults();
|
||||
vector<std::string> processDatasets(Datasets& datasets) const;
|
||||
pair<double, json> processFileSingle(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
|
||||
pair<double, json> processFileNested(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
|
||||
vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||
// pair<double, json> processFileSingle(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
|
||||
// pair<double, json> processFileNested(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
|
||||
struct ConfigGrid config;
|
||||
pair<int, int> part_range_mpi(int n_tasks, int nprocs, int rank);
|
||||
// pair<int, int> part_range_mpi(int n_tasks, int nprocs, int rank);
|
||||
json build_tasks_mpi();
|
||||
void process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results);
|
||||
// void process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results);
|
||||
Timer timer; // used to measure the time of the whole process
|
||||
};
|
||||
} /* namespace platform */
|
||||
|
@ -203,18 +203,18 @@ int main(int argc, char** argv)
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &mpi_config.n_procs);
|
||||
grid_search.go_producer_consumer(mpi_config);
|
||||
if (mpi_config.rank == mpi_config.manager) {
|
||||
auto results = grid_search.getResults();
|
||||
auto results = grid_search.loadResults();
|
||||
list_results(results, config.model);
|
||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||
}
|
||||
MPI_Finalize();
|
||||
} else {
|
||||
grid_search.go();
|
||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||
// } else {
|
||||
// grid_search.go();
|
||||
// std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||
}
|
||||
} else {
|
||||
// List results
|
||||
auto results = grid_search.getResults();
|
||||
auto results = grid_search.loadResults();
|
||||
if (results.empty()) {
|
||||
std::cout << "** No results found" << std::endl;
|
||||
} else {
|
||||
|
Loading…
Reference in New Issue
Block a user