Refactor New classifiers to extract predict
This commit is contained in:
parent
1a09ccca4c
commit
7f45495837
@ -10,15 +10,12 @@ namespace bayesnet {
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
model.initialize();
|
||||
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
fit_local_discretization(states, y);
|
||||
generateTensorXFromVector();
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
cout << "KDBNew: Fitting model" << endl;
|
||||
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
|
||||
KDB::fit(KDB::Xv, KDB::yv, features, className, states);
|
||||
cout << "KDBNew: Model fitted" << endl;
|
||||
localDiscretizationProposal(states, model);
|
||||
generateTensorXFromVector();
|
||||
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
@ -26,20 +23,10 @@ namespace bayesnet {
|
||||
model.fit(KDB::Xv, KDB::yv, features, className);
|
||||
return *this;
|
||||
}
|
||||
void KDBNew::train()
|
||||
{
|
||||
KDB::train();
|
||||
}
|
||||
Tensor KDBNew::predict(Tensor& X)
|
||||
{
|
||||
auto Xtd = torch::zeros_like(X, torch::kInt32);
|
||||
for (int i = 0; i < X.size(0); ++i) {
|
||||
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
|
||||
auto Xd = discretizers[features[i]]->transform(Xt);
|
||||
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
|
||||
}
|
||||
cout << "KDBNew Xtd: " << Xtd.sizes() << endl;
|
||||
return KDB::predict(Xtd);
|
||||
auto Xt = prepareX(X);
|
||||
return KDB::predict(Xt);
|
||||
}
|
||||
vector<string> KDBNew::graph(const string& name)
|
||||
{
|
||||
|
@ -13,7 +13,6 @@ namespace bayesnet {
|
||||
KDBNew& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||
vector<string> graph(const string& name = "KDB") override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
void train() override;
|
||||
static inline string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
|
@ -47,25 +47,25 @@ namespace bayesnet {
|
||||
//
|
||||
//
|
||||
//
|
||||
auto tmp = discretizers[feature]->transform(xvf);
|
||||
Xv[index] = tmp;
|
||||
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||
iota(xStates.begin(), xStates.end(), 0);
|
||||
//Update new states of the feature/node
|
||||
states[feature] = xStates;
|
||||
// auto tmp = discretizers[feature]->transform(xvf);
|
||||
// Xv[index] = tmp;
|
||||
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||
// iota(xStates.begin(), xStates.end(), 0);
|
||||
// //Update new states of the feature/node
|
||||
// states[feature] = xStates;
|
||||
}
|
||||
if (upgrade) {
|
||||
// Discretize again X (only the affected indices) with the new fitted discretizers
|
||||
for (auto index : indicesToReDiscretize) {
|
||||
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
|
||||
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||
Xv[index] = discretizers[pFeatures[index]]->transform(Xt);
|
||||
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||
iota(xStates.begin(), xStates.end(), 0);
|
||||
//Update new states of the feature/node
|
||||
states[pFeatures[index]] = xStates;
|
||||
}
|
||||
}
|
||||
// if (upgrade) {
|
||||
// // Discretize again X (only the affected indices) with the new fitted discretizers
|
||||
// for (auto index : indicesToReDiscretize) {
|
||||
// auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
|
||||
// auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||
// Xv[index] = discretizers[pFeatures[index]]->transform(Xt);
|
||||
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||
// iota(xStates.begin(), xStates.end(), 0);
|
||||
// //Update new states of the feature/node
|
||||
// states[pFeatures[index]] = xStates;
|
||||
// }
|
||||
// }
|
||||
}
|
||||
void Proposal::fit_local_discretization(map<string, vector<int>>& states, torch::Tensor& y)
|
||||
{
|
||||
@ -89,4 +89,14 @@ namespace bayesnet {
|
||||
iota(yStates.begin(), yStates.end(), 0);
|
||||
states[pClassName] = yStates;
|
||||
}
|
||||
torch::Tensor Proposal::prepareX(torch::Tensor& X)
|
||||
{
|
||||
auto Xtd = torch::zeros_like(X, torch::kInt32);
|
||||
for (int i = 0; i < X.size(0); ++i) {
|
||||
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
|
||||
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
|
||||
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
|
||||
}
|
||||
return Xtd;
|
||||
}
|
||||
}
|
@ -5,6 +5,7 @@
|
||||
#include <torch/torch.h>
|
||||
#include "Network.h"
|
||||
#include "CPPFImdlp.h"
|
||||
#include "Classifier.h"
|
||||
|
||||
namespace bayesnet {
|
||||
class Proposal {
|
||||
@ -12,6 +13,7 @@ namespace bayesnet {
|
||||
Proposal(vector<vector<int>>& Xv_, vector<int>& yv_, vector<string>& features_, string& className_);
|
||||
virtual ~Proposal();
|
||||
protected:
|
||||
torch::Tensor prepareX(torch::Tensor& X);
|
||||
void localDiscretizationProposal(map<string, vector<int>>& states, Network& model);
|
||||
void fit_local_discretization(map<string, vector<int>>& states, torch::Tensor& y);
|
||||
torch::Tensor Xf; // X continuous nxm tensor
|
||||
|
@ -15,9 +15,7 @@ namespace bayesnet {
|
||||
generateTensorXFromVector();
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
cout << "TANNew: Fitting model" << endl;
|
||||
TAN::fit(TAN::Xv, TAN::yv, features, className, states);
|
||||
cout << "TANNew: Model fitted" << endl;
|
||||
localDiscretizationProposal(states, model);
|
||||
generateTensorXFromVector();
|
||||
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||
@ -27,14 +25,8 @@ namespace bayesnet {
|
||||
}
|
||||
Tensor TANNew::predict(Tensor& X)
|
||||
{
|
||||
auto Xtd = torch::zeros_like(X, torch::kInt32);
|
||||
for (int i = 0; i < X.size(0); ++i) {
|
||||
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
|
||||
auto Xd = discretizers[features[i]]->transform(Xt);
|
||||
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
|
||||
}
|
||||
cout << "TANNew Xtd: " << Xtd.sizes() << endl;
|
||||
return TAN::predict(Xtd);
|
||||
auto Xt = prepareX(X);
|
||||
return TAN::predict(Xt);
|
||||
}
|
||||
vector<string> TANNew::graph(const string& name)
|
||||
{
|
||||
|
@ -146,11 +146,6 @@ namespace platform {
|
||||
auto y_test = y.index({ test_t });
|
||||
cout << nfold + 1 << ", " << flush;
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
cout << endl;
|
||||
auto lines = clf->show();
|
||||
for (auto line : lines) {
|
||||
cout << line << endl;
|
||||
}
|
||||
nodes[item] = clf->getNumberOfNodes();
|
||||
edges[item] = clf->getNumberOfEdges();
|
||||
num_states[item] = clf->getNumberOfStates();
|
||||
|
Loading…
Reference in New Issue
Block a user