Remove threads
This commit is contained in:
parent
7c3e315ae7
commit
7806f961e2
5
.vscode/launch.json
vendored
5
.vscode/launch.json
vendored
@ -25,12 +25,13 @@
|
|||||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||||
"args": [
|
"args": [
|
||||||
"-m",
|
"-m",
|
||||||
"AODELd",
|
"AODE",
|
||||||
"-p",
|
"-p",
|
||||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
"/Users/rmontanana/Code/discretizbench/datasets",
|
||||||
"--stratified",
|
"--stratified",
|
||||||
"-d",
|
"-d",
|
||||||
"wine"
|
"letter",
|
||||||
|
"--discretize"
|
||||||
// "--hyperparameters",
|
// "--hyperparameters",
|
||||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||||
],
|
],
|
||||||
|
@ -34,18 +34,22 @@ namespace bayesnet {
|
|||||||
throw logic_error("Ensemble has not been fitted");
|
throw logic_error("Ensemble has not been fitted");
|
||||||
}
|
}
|
||||||
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
||||||
//Create a threadpool
|
// //Create a threadpool
|
||||||
auto threads{ vector<thread>() };
|
// auto threads{ vector<thread>() };
|
||||||
mutex mtx;
|
// mutex mtx;
|
||||||
|
// for (auto i = 0; i < n_models; ++i) {
|
||||||
|
// threads.push_back(thread([&, i]() {
|
||||||
|
// auto ypredict = models[i]->predict(X);
|
||||||
|
// lock_guard<mutex> lock(mtx);
|
||||||
|
// y_pred.index_put_({ "...", i }, ypredict);
|
||||||
|
// }));
|
||||||
|
// Hacer voting aquí ? ? ?
|
||||||
|
// }
|
||||||
|
// for (auto& thread : threads) {
|
||||||
|
// thread.join();
|
||||||
|
// }
|
||||||
for (auto i = 0; i < n_models; ++i) {
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
threads.push_back(thread([&, i]() {
|
y_pred.index_put_({ "...", i }, models[i]->predict(X));
|
||||||
auto ypredict = models[i]->predict(X);
|
|
||||||
lock_guard<mutex> lock(mtx);
|
|
||||||
y_pred.index_put_({ "...", i }, ypredict);
|
|
||||||
}));
|
|
||||||
}
|
|
||||||
for (auto& thread : threads) {
|
|
||||||
thread.join();
|
|
||||||
}
|
}
|
||||||
return torch::tensor(voting(y_pred));
|
return torch::tensor(voting(y_pred));
|
||||||
}
|
}
|
||||||
|
@ -174,42 +174,10 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
setStates(states);
|
setStates(states);
|
||||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||||
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
for (auto& node : nodes) {
|
||||||
if (maxThreadsRunning < 1) {
|
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||||
maxThreadsRunning = 1;
|
fitted = true;
|
||||||
}
|
}
|
||||||
vector<thread> threads;
|
|
||||||
mutex mtx;
|
|
||||||
condition_variable cv;
|
|
||||||
int activeThreads = 0;
|
|
||||||
int nextNodeIndex = 0;
|
|
||||||
while (nextNodeIndex < nodes.size()) {
|
|
||||||
unique_lock<mutex> lock(mtx);
|
|
||||||
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
|
|
||||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
|
|
||||||
while (true) {
|
|
||||||
unique_lock<mutex> lock(mtx);
|
|
||||||
if (nextNodeIndex >= nodes.size()) {
|
|
||||||
break; // No more work remaining
|
|
||||||
}
|
|
||||||
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
|
||||||
++nextNodeIndex;
|
|
||||||
lock.unlock();
|
|
||||||
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
|
||||||
lock.lock();
|
|
||||||
nodes[pair.first] = std::move(pair.second);
|
|
||||||
lock.unlock();
|
|
||||||
}
|
|
||||||
lock_guard<mutex> lock(mtx);
|
|
||||||
--activeThreads;
|
|
||||||
cv.notify_one();
|
|
||||||
});
|
|
||||||
++activeThreads;
|
|
||||||
}
|
|
||||||
for (auto& thread : threads) {
|
|
||||||
thread.join();
|
|
||||||
}
|
|
||||||
fitted = true;
|
|
||||||
}
|
}
|
||||||
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||||
{
|
{
|
||||||
@ -331,19 +299,25 @@ namespace bayesnet {
|
|||||||
vector<double> Network::exactInference(map<string, int>& evidence)
|
vector<double> Network::exactInference(map<string, int>& evidence)
|
||||||
{
|
{
|
||||||
vector<double> result(classNumStates, 0.0);
|
vector<double> result(classNumStates, 0.0);
|
||||||
vector<thread> threads;
|
// vector<thread> threads;
|
||||||
mutex mtx;
|
// mutex mtx;
|
||||||
|
// for (int i = 0; i < classNumStates; ++i) {
|
||||||
|
// threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
||||||
|
// auto completeEvidence = map<string, int>(evidence);
|
||||||
|
// completeEvidence[getClassName()] = i;
|
||||||
|
// double factor = computeFactor(completeEvidence);
|
||||||
|
// lock_guard<mutex> lock(mtx);
|
||||||
|
// result[i] = factor;
|
||||||
|
// });
|
||||||
|
// }
|
||||||
|
// for (auto& thread : threads) {
|
||||||
|
// thread.join();
|
||||||
|
// }
|
||||||
for (int i = 0; i < classNumStates; ++i) {
|
for (int i = 0; i < classNumStates; ++i) {
|
||||||
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
auto completeEvidence = map<string, int>(evidence);
|
||||||
auto completeEvidence = map<string, int>(evidence);
|
completeEvidence[getClassName()] = i;
|
||||||
completeEvidence[getClassName()] = i;
|
double factor = computeFactor(completeEvidence);
|
||||||
double factor = computeFactor(completeEvidence);
|
result[i] = factor;
|
||||||
lock_guard<mutex> lock(mtx);
|
|
||||||
result[i] = factor;
|
|
||||||
});
|
|
||||||
}
|
|
||||||
for (auto& thread : threads) {
|
|
||||||
thread.join();
|
|
||||||
}
|
}
|
||||||
// Normalize result
|
// Normalize result
|
||||||
double sum = accumulate(result.begin(), result.end(), 0.0);
|
double sum = accumulate(result.begin(), result.end(), 0.0);
|
||||||
|
@ -27,6 +27,7 @@ namespace bayesnet {
|
|||||||
Network();
|
Network();
|
||||||
explicit Network(float);
|
explicit Network(float);
|
||||||
explicit Network(Network&);
|
explicit Network(Network&);
|
||||||
|
~Network() = default;
|
||||||
torch::Tensor& getSamples();
|
torch::Tensor& getSamples();
|
||||||
float getmaxThreads();
|
float getmaxThreads();
|
||||||
void addNode(const string&);
|
void addNode(const string&);
|
||||||
|
@ -179,6 +179,7 @@ namespace platform {
|
|||||||
result.addTimeTrain(train_time[item].item<double>());
|
result.addTimeTrain(train_time[item].item<double>());
|
||||||
result.addTimeTest(test_time[item].item<double>());
|
result.addTimeTest(test_time[item].item<double>());
|
||||||
item++;
|
item++;
|
||||||
|
clf.reset();
|
||||||
}
|
}
|
||||||
cout << "end. " << flush;
|
cout << "end. " << flush;
|
||||||
}
|
}
|
||||||
|
@ -26,7 +26,7 @@ namespace platform {
|
|||||||
instance = it->second();
|
instance = it->second();
|
||||||
// wrap instance in a shared ptr and return
|
// wrap instance in a shared ptr and return
|
||||||
if (instance != nullptr)
|
if (instance != nullptr)
|
||||||
return shared_ptr<bayesnet::BaseClassifier>(instance);
|
return unique_ptr<bayesnet::BaseClassifier>(instance);
|
||||||
else
|
else
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user