Add json lib and json result generation

This commit is contained in:
Ricardo Montañana Gómez 2023-07-26 17:49:03 +02:00
parent 49a49a9dcd
commit 6f7fb290b0
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
11 changed files with 325 additions and 325 deletions

3
.gitmodules vendored
View File

@ -7,3 +7,6 @@
[submodule "lib/argparse"]
path = lib/argparse
url = https://github.com/p-ranav/argparse
[submodule "lib/json"]
path = lib/json
url = https://github.com/nlohmann/json.git

View File

@ -100,7 +100,8 @@
"shared_mutex": "cpp",
"*.ipp": "cpp",
"cassert": "cpp",
"charconv": "cpp"
"charconv": "cpp",
"source_location": "cpp"
},
"cmake.configureOnOpen": false,
"C_Cpp.default.configurationProvider": "ms-vscode.cmake-tools"

View File

@ -23,7 +23,7 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
# Options
# -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." ON)
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" ON)
option(CODE_COVERAGE "Collect coverage from test library" ON)
@ -43,6 +43,7 @@ include(CodeCoverage)
add_git_submodule("lib/mdlp")
add_git_submodule("lib/catch2")
add_git_submodule("lib/argparse")
add_git_submodule("lib/json")
# Subdirectories
# --------------

View File

@ -0,0 +1 @@
null

1
lib/json Submodule

@ -0,0 +1 @@
Subproject commit 5d2754306d67d1e654a1a34e1d2e74439a9d53b3

View File

@ -3,7 +3,6 @@ include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
add_executable(main Experiment.cc Folding.cc platformUtils.cc)
add_executable(testx testx.cpp Folding.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(testx ArffFiles mdlp "${TORCH_LIBRARIES}")
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES} ")

View File

@ -1,164 +1,107 @@
#include <iostream>
#include <string>
#include <torch/torch.h>
#include <thread>
#include <argparse/argparse.hpp>
#include "ArffFiles.h"
#include "Network.h"
#include "BayesMetrics.h"
#include "CPPFImdlp.h"
#include "KDB.h"
#include "SPODE.h"
#include "AODE.h"
#include "TAN.h"
#include "platformUtils.h"
#include "Result.h"
#include "Folding.h"
#include "Experiment.h"
namespace platform {
using json = nlohmann::json;
string get_date_time()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
using namespace std;
Result cross_validation(Fold* fold, string model_name, Tensor& X, Tensor& y, vector<string> features, string className, map<string, vector<int>> states)
{
auto classifiers = map<string, bayesnet::BaseClassifier*>({
{ "AODE", new bayesnet::AODE() }, { "KDB", new bayesnet::KDB(2) },
{ "SPODE", new bayesnet::SPODE(2) }, { "TAN", new bayesnet::TAN() }
}
);
auto Xt = torch::transpose(X, 0, 1);
auto result = Result();
auto k = fold->getNumberOfFolds();
auto accuracy_test = torch::zeros({ k }, kFloat64);
auto accuracy_train = torch::zeros({ k }, kFloat64);
auto train_time = torch::zeros({ k }, kFloat64);
auto test_time = torch::zeros({ k }, kFloat64);
Timer train_timer, test_timer;
for (int i = 0; i < k; i++) {
bayesnet::BaseClassifier* model = classifiers[model_name];
train_timer.start();
auto [train, test] = fold->getFold(i);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = Xt.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = Xt.index({ "...", test_t });
auto y_test = y.index({ test_t });
model->fit(X_train, y_train, features, className, states);
cout << "Training Fold " << i + 1 << endl;
cout << "X_train: " << X_train.sizes() << endl;
cout << "y_train: " << y_train.sizes() << endl;
cout << "X_test: " << X_test.sizes() << endl;
cout << "y_test: " << y_test.sizes() << endl;
train_time[i] = train_timer.getDuration();
auto accuracy_train_value = model->score(X_train, y_train);
test_timer.start();
auto accuracy_test_value = model->score(X_test, y_test);
test_time[i] = test_timer.getDuration();
accuracy_train[i] = accuracy_train_value;
accuracy_test[i] = accuracy_test_value;
std::ostringstream oss;
oss << std::put_time(timeinfo, "%Y-%m-%d_%H:%M:%S");
return oss.str();
}
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
return result;
}
int main(int argc, char** argv)
{
map<string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
auto valid_datasets = vector<string>();
for (auto dataset : datasets) {
valid_datasets.push_back(dataset.first);
string Experiment::get_file_name()
{
string date_time = get_date_time();
string result = "results_" + score_name + "_" + model + "_" + platform + "_" + date_time + "_" + (stratified ? "1" : "0") + ".json";
return result;
}
argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-d", "--dataset")
.help("Dataset file name")
.action([valid_datasets](const std::string& value) {
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
return value;
json Experiment::build_json()
{
json result;
result["title"] = title;
result["model"] = model;
result["platform"] = platform;
result["score_name"] = score_name;
result["model_version"] = model_version;
result["language_version"] = language_version;
result["discretized"] = discretized;
result["stratified"] = stratified;
result["nfolds"] = nfolds;
result["random_seeds"] = random_seeds;
result["duration"] = duration;
result["results"] = json::array();
for (auto& r : results) {
json j;
j["dataset"] = r.getDataset();
j["hyperparameters"] = r.getHyperparameters();
j["samples"] = r.getSamples();
j["features"] = r.getFeatures();
j["classes"] = r.getClasses();
j["score_train"] = r.getScoreTrain();
j["score_test"] = r.getScoreTest();
j["score_train_std"] = r.getScoreTrainStd();
j["score_test_std"] = r.getScoreTestStd();
j["train_time"] = r.getTrainTime();
j["train_time_std"] = r.getTrainTimeStd();
j["test_time"] = r.getTestTime();
j["test_time_std"] = r.getTestTimeStd();
result["results"].push_back(j);
}
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
return result;
}
void Experiment::save(string path)
{
json data = build_json();
ofstream file(path + get_file_name());
file << data;
file.close();
}
Result cross_validation(Fold* fold, string model_name, torch::Tensor& X, torch::Tensor& y, vector<string> features, string className, map<string, vector<int>> states)
{
auto classifiers = map<string, bayesnet::BaseClassifier*>({
{ "AODE", new bayesnet::AODE() }, { "KDB", new bayesnet::KDB(2) },
{ "SPODE", new bayesnet::SPODE(2) }, { "TAN", new bayesnet::TAN() }
}
);
program.add_argument("-p", "--path")
.help("folder where the data files are located, default")
.default_value(string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use {AODE, KDB, SPODE, TAN}")
.action([](const std::string& value) {
static const vector<string> choices = { "AODE", "KDB", "SPODE", "TAN" };
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of {AODE, KDB, SPODE, TAN}");
}
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw runtime_error(err.what());
}
catch (...) {
throw runtime_error("Number of folds must be an integer");
}});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, discretize_dataset, stratified;
int n_folds, seed;
string model_name, file_name, path, complete_file_name;
try {
program.parse_args(argc, argv);
file_name = program.get<string>("dataset");
path = program.get<string>("path");
model_name = program.get<string>("model");
discretize_dataset = program.get<bool>("discretize");
stratified = program.get<bool>("stratified");
n_folds = program.get<int>("folds");
seed = program.get<int>("seed");
complete_file_name = path + file_name + ".arff";
class_last = datasets[file_name];
if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
);
auto Xt = torch::transpose(X, 0, 1);
auto result = Result();
auto k = fold->getNumberOfFolds();
auto accuracy_test = torch::zeros({ k }, torch::kFloat64);
auto accuracy_train = torch::zeros({ k }, torch::kFloat64);
auto train_time = torch::zeros({ k }, torch::kFloat64);
auto test_time = torch::zeros({ k }, torch::kFloat64);
Timer train_timer, test_timer;
for (int i = 0; i < k; i++) {
bayesnet::BaseClassifier* model = classifiers[model_name];
train_timer.start();
auto [train, test] = fold->getFold(i);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = Xt.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = Xt.index({ "...", test_t });
auto y_test = y.index({ test_t });
model->fit(X_train, y_train, features, className, states);
cout << "Training Fold " << i + 1 << endl;
cout << "X_train: " << X_train.sizes() << endl;
cout << "y_train: " << y_train.sizes() << endl;
cout << "X_test: " << X_test.sizes() << endl;
cout << "y_test: " << y_test.sizes() << endl;
train_time[i] = train_timer.getDuration();
auto accuracy_train_value = model->score(X_train, y_train);
test_timer.start();
auto accuracy_test_value = model->score(X_test, y_test);
test_time[i] = test_timer.getDuration();
accuracy_train[i] = accuracy_train_value;
accuracy_test[i] = accuracy_test_value;
}
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
return result;
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
/*
* Begin Processing
*/
auto [X, y, features, className, states] = loadDataset(path, file_name, class_last, discretize_dataset);
Fold* fold;
if (stratified)
fold = new StratifiedKFold(n_folds, y, seed);
else
fold = new KFold(n_folds, y.numel(), seed);
auto experiment = Experiment();
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform("cpp");
experiment.setStratified(stratified).setNFolds(n_folds).addRandomSeed(seed).setScoreName("accuracy");
auto result = cross_validation(fold, model_name, X, y, features, className, states);
result.setDataset(file_name);
experiment.addResult(result);
experiment.save(path);
experiment.show();
return 0;
}
}

View File

@ -0,0 +1,90 @@
#ifndef EXPERIMENT_H
#define EXPERIMENT_H
#include <torch/torch.h>
#include <nlohmann/json.hpp>
#include <string>
#include <chrono>
#include "Folding.h"
#include "BaseClassifier.h"
#include "TAN.h"
#include "KDB.h"
#include "AODE.h"
using namespace std;
namespace platform {
using json = nlohmann::json;
class Timer {
private:
chrono::time_point<chrono::steady_clock> begin;
public:
Timer() = default;
~Timer() = default;
void start() { begin = chrono::high_resolution_clock::now(); }
float getDuration() { return chrono::duration_cast<chrono::milliseconds>(chrono::high_resolution_clock::now() - begin).count(); }
};
class Result {
private:
string dataset, hyperparameters;
int samples, features, classes;
float score_train, score_test, score_train_std, score_test_std, train_time, train_time_std, test_time, test_time_std;
public:
Result() = default;
Result& setDataset(string dataset) { this->dataset = dataset; return *this; }
Result& setHyperparameters(string hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
Result& setSamples(int samples) { this->samples = samples; return *this; }
Result& setFeatures(int features) { this->features = features; return *this; }
Result& setClasses(int classes) { this->classes = classes; return *this; }
Result& setScoreTrain(float score) { this->score_train = score; return *this; }
Result& setScoreTest(float score) { this->score_test = score; return *this; }
Result& setScoreTrainStd(float score_std) { this->score_train_std = score_std; return *this; }
Result& setScoreTestStd(float score_std) { this->score_test_std = score_std; return *this; }
Result& setTrainTime(float train_time) { this->train_time = train_time; return *this; }
Result& setTrainTimeStd(float train_time_std) { this->train_time_std = train_time_std; return *this; }
Result& setTestTime(float test_time) { this->test_time = test_time; return *this; }
Result& setTestTimeStd(float test_time_std) { this->test_time_std = test_time_std; return *this; }
const float get_score_train() const { return score_train; }
float get_score_test() { return score_test; }
const string& getDataset() const { return dataset; }
const string& getHyperparameters() const { return hyperparameters; }
const int getSamples() const { return samples; }
const int getFeatures() const { return features; }
const int getClasses() const { return classes; }
const float getScoreTrain() const { return score_train; }
const float getScoreTest() const { return score_test; }
const float getScoreTrainStd() const { return score_train_std; }
const float getScoreTestStd() const { return score_test_std; }
const float getTrainTime() const { return train_time; }
const float getTrainTimeStd() const { return train_time_std; }
const float getTestTime() const { return test_time; }
const float getTestTimeStd() const { return test_time_std; }
};
class Experiment {
private:
string title, model, platform, score_name, model_version, language_version;
bool discretized, stratified;
vector<Result> results;
vector<int> random_seeds;
int nfolds;
float duration;
json build_json();
public:
Experiment() = default;
Experiment& setTitle(string title) { this->title = title; return *this; }
Experiment& setModel(string model) { this->model = model; return *this; }
Experiment& setPlatform(string platform) { this->platform = platform; return *this; }
Experiment& setScoreName(string score_name) { this->score_name = score_name; return *this; }
Experiment& setModelVersion(string model_version) { this->model_version = model_version; return *this; }
Experiment& setLanguageVersion(string language_version) { this->language_version = language_version; return *this; }
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; return *this; }
Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; }
Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; }
Experiment& addResult(Result result) { results.push_back(result); return *this; }
Experiment& addRandomSeed(int random_seed) { random_seeds.push_back(random_seed); return *this; }
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
string get_file_name();
void save(string path);
void show() { cout << "Showing experiment..." << "Score Test: " << results[0].get_score_test() << " Score Train: " << results[0].get_score_train() << endl; }
};
Result cross_validation(Fold* fold, string model_name, torch::Tensor& X, torch::Tensor& y, vector<string> features, string className, map<string, vector<int>> states);
}
#endif

View File

@ -1,62 +0,0 @@
#ifndef RESULT_H
#define RESULT_H
#include <string>
#include <chrono>
using namespace std;
class Timer {
private:
chrono::time_point<chrono::steady_clock> begin;
public:
Timer() = default;
~Timer() = default;
void start() { begin = chrono::high_resolution_clock::now(); }
float getDuration() { return chrono::duration_cast<chrono::milliseconds>(chrono::high_resolution_clock::now() - begin).count(); }
};
class Result {
private:
string dataset, hyperparameters;
int samples, features, classes;
float score_train, score_test, score_train_std, score_test_std, train_time, train_time_std, test_time, test_time_std;
public:
Result() = default;
Result& setDataset(string dataset) { this->dataset = dataset; return *this; }
Result& setHyperparameters(string hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
Result& setSamples(int samples) { this->samples = samples; return *this; }
Result& setFeatures(int features) { this->features = features; return *this; }
Result& setClasses(int classes) { this->classes = classes; return *this; }
Result& setScoreTrain(float score) { this->score_train = score; return *this; }
Result& setScoreTest(float score) { this->score_test = score; return *this; }
Result& setScoreTrainStd(float score_std) { this->score_train_std = score_std; return *this; }
Result& setScoreTestStd(float score_std) { this->score_test_std = score_std; return *this; }
Result& setTrainTime(float train_time) { this->train_time = train_time; return *this; }
Result& setTrainTimeStd(float train_time_std) { this->train_time_std = train_time_std; return *this; }
Result& setTestTime(float test_time) { this->test_time = test_time; return *this; }
Result& setTestTimeStd(float test_time_std) { this->test_time_std = test_time_std; return *this; }
float get_score_train() { return score_train; }
float get_score_test() { return score_test; }
};
class Experiment {
private:
string title, model, platform, score_name, model_version, language_version;
bool discretized, stratified;
vector<Result> results;
vector<int> random_seeds;
int nfolds;
public:
Experiment() = default;
Experiment& setTitle(string title) { this->title = title; return *this; }
Experiment& setModel(string model) { this->model = model; return *this; }
Experiment& setPlatform(string platform) { this->platform = platform; return *this; }
Experiment& setScoreName(string score_name) { this->score_name = score_name; return *this; }
Experiment& setModelVersion(string model_version) { this->model_version = model_version; return *this; }
Experiment& setLanguageVersion(string language_version) { this->language_version = language_version; return *this; }
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; return *this; }
Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; }
Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; }
Experiment& addResult(Result result) { results.push_back(result); return *this; }
Experiment& addRandomSeed(int random_seed) { random_seeds.push_back(random_seed); return *this; }
void save(string path) { cout << "Saving experiment..." << endl; }
void show() { cout << "Showing experiment..." << "Score Test: " << results[0].get_score_test() << " Score Train: " << results[0].get_score_train() << endl; }
};
#endif

124
src/Platform/main.cc Normal file
View File

@ -0,0 +1,124 @@
#include <iostream>
#include <string>
#include <torch/torch.h>
#include <thread>
#include <argparse/argparse.hpp>
#include "ArffFiles.h"
#include "Network.h"
#include "BayesMetrics.h"
#include "CPPFImdlp.h"
#include "KDB.h"
#include "SPODE.h"
#include "AODE.h"
#include "TAN.h"
#include "platformUtils.h"
#include "Experiment.h"
#include "Folding.h"
using namespace std;
int main(int argc, char** argv)
{
map<string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
auto valid_datasets = vector<string>();
for (auto dataset : datasets) {
valid_datasets.push_back(dataset.first);
}
argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-d", "--dataset")
.help("Dataset file name")
.action([valid_datasets](const std::string& value) {
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
return value;
}
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
}
);
program.add_argument("-p", "--path")
.help("folder where the data files are located, default")
.default_value(string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use {AODE, KDB, SPODE, TAN}")
.action([](const std::string& value) {
static const vector<string> choices = { "AODE", "KDB", "SPODE", "TAN" };
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of {AODE, KDB, SPODE, TAN}");
}
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw runtime_error(err.what());
}
catch (...) {
throw runtime_error("Number of folds must be an integer");
}});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, discretize_dataset, stratified;
int n_folds, seed;
string model_name, file_name, path, complete_file_name;
try {
program.parse_args(argc, argv);
file_name = program.get<string>("dataset");
path = program.get<string>("path");
model_name = program.get<string>("model");
discretize_dataset = program.get<bool>("discretize");
stratified = program.get<bool>("stratified");
n_folds = program.get<int>("folds");
seed = program.get<int>("seed");
complete_file_name = path + file_name + ".arff";
class_last = datasets[file_name];
if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
}
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
/*
* Begin Processing
*/
auto [X, y, features, className, states] = loadDataset(path, file_name, class_last, discretize_dataset);
Fold* fold;
if (stratified)
fold = new StratifiedKFold(n_folds, y, seed);
else
fold = new KFold(n_folds, y.numel(), seed);
auto experiment = platform::Experiment();
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform("cpp");
experiment.setStratified(stratified).setNFolds(n_folds).addRandomSeed(seed).setScoreName("accuracy");
platform::Timer timer;
timer.start();
auto result = platform::cross_validation(fold, model_name, X, y, features, className, states);
result.setDataset(file_name);
experiment.addResult(result);
experiment.setDuration(timer.getDuration());
experiment.save(path);
experiment.show();
return 0;
}

View File

@ -1,101 +0,0 @@
#include "Folding.h"
#include <map>
#include <iostream>
using namespace std;
class A {
private:
int a;
public:
A(int a) : a(a) {}
int getA() { return a; }
};
class B : public A {
private:
int b;
public:
B(int a, int b) : A(a), b(b) {}
int getB() { return b; }
};
class C : public A {
private:
int c;
public:
C(int a, int c) : A(a), c(c) {}
int getC() { return c; }
};
string counts(vector<int> y, vector<int> indices)
{
auto result = map<int, int>();
for (auto i = 0; i < indices.size(); ++i) {
result[y[indices[i]]]++;
}
string final_result = "";
for (auto i = 0; i < result.size(); ++i)
final_result += to_string(i) + " -> " + to_string(result[i]) + " // ";
final_result += "\n";
return final_result;
}
int main()
{
auto y = vector<int>(153);
fill(y.begin(), y.begin() + 50, 0);
fill(y.begin() + 50, y.begin() + 103, 1);
fill(y.begin() + 103, y.end(), 2);
//auto fold = KFold(5, 150);
auto fold = StratifiedKFold(5, y, -1);
for (int i = 0; i < 5; ++i) {
cout << "Fold: " << i << endl;
auto [train, test] = fold.getFold(i);
cout << "Train: ";
cout << "(" << train.size() << "): ";
for (auto j = 0; j < static_cast<int>(train.size()); j++)
cout << train[j] << ", ";
cout << endl;
cout << "Train Statistics : " << counts(y, train);
cout << "-------------------------------------------------------------------------------" << endl;
cout << "Test: ";
cout << "(" << test.size() << "): ";
for (auto j = 0; j < static_cast<int>(test.size()); j++)
cout << test[j] << ", ";
cout << endl;
cout << "Test Statistics: " << counts(y, test);
cout << "==============================================================================" << endl;
torch::Tensor a = torch::zeros({ 5, 3 });
torch::Tensor b = torch::zeros({ 5 }) + 1;
torch::Tensor c = torch::cat({ a, b.view({5, 1}) }, 1);
cout << "a:" << a.sizes() << endl;
cout << a << endl;
cout << "b:" << b.sizes() << endl;
cout << b << endl;
cout << "c:" << c.sizes() << endl;
cout << c << endl;
torch::Tensor d = torch::zeros({ 5, 3 });
torch::Tensor e = torch::tensor({ 1,2,3,4,5 }) + 1;
torch::Tensor f = torch::cat({ d, e.view({5, 1}) }, 1);
cout << "d:" << d.sizes() << endl;
cout << d << endl;
cout << "e:" << e.sizes() << endl;
cout << e << endl;
cout << "f:" << f.sizes() << endl;
cout << f << endl;
auto indices = torch::tensor({ 0, 2, 4 });
auto k = f.index({ indices, "..." });
cout << "k:" << k.sizes() << endl;
cout << k << endl;
auto w = torch::index_select(f, 0, indices);
cout << "w:" << w.sizes() << endl;
cout << w << endl;
// cout << "Vector poly" << endl;
// auto some = vector<A>();
// auto cx = C(5, 4);
// auto bx = B(7, 6);
// some.push_back(cx);
// some.push_back(bx);
// for (auto& obj : some) {
// cout << "Obj :" << obj.getA() << endl;
// }
}
}