Begin Eliminate Variables algorithm
This commit is contained in:
parent
59e5794e5d
commit
6da05d436c
@ -58,14 +58,12 @@ namespace bayesnet {
|
||||
// Temporarily add edge to check for cycles
|
||||
nodes[parent]->addChild(nodes[child]);
|
||||
nodes[child]->addParent(nodes[parent]);
|
||||
// temporarily add edge
|
||||
unordered_set<string> visited;
|
||||
unordered_set<string> recStack;
|
||||
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
|
||||
{
|
||||
// remove problematic edge
|
||||
nodes[parent]->removeChild(nodes[child]);
|
||||
|
||||
nodes[child]->removeParent(nodes[parent]);
|
||||
throw invalid_argument("Adding this edge forms a cycle in the graph.");
|
||||
}
|
||||
@ -116,47 +114,37 @@ namespace bayesnet {
|
||||
node->setCPT(cpt);
|
||||
}
|
||||
}
|
||||
pair<int, double> Network::predict_sample(const vector<int>& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size() != features.size()) {
|
||||
throw std::invalid_argument("Sample size (" + to_string(sample.size()) +
|
||||
") does not match the number of features (" + to_string(features.size()) + ")");
|
||||
}
|
||||
// pair<int, double> Network::predict_sample(const vector<int>& sample)
|
||||
// {
|
||||
|
||||
// Map the feature values to their corresponding nodes
|
||||
map<string, int> featureValues;
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
featureValues[features[i]] = sample[i];
|
||||
}
|
||||
|
||||
// For each possible class, calculate the posterior probability
|
||||
Node* classNode = nodes[className];
|
||||
int numClassStates = classNode->getNumStates();
|
||||
std::vector<double> classProbabilities(numClassStates, 0.0);
|
||||
for (int classState = 0; classState < numClassStates; ++classState) {
|
||||
// Start with the prior probability of the class
|
||||
classProbabilities[classState] = classNode->getCPT()[classState].item<double>();
|
||||
// // For each possible class, calculate the posterior probability
|
||||
// Node* classNode = nodes[className];
|
||||
// int numClassStates = classNode->getNumStates();
|
||||
// vector<double> classProbabilities(numClassStates, 0.0);
|
||||
// for (int classState = 0; classState < numClassStates; ++classState) {
|
||||
// // Start with the prior probability of the class
|
||||
// classProbabilities[classState] = classNode->getCPT()[classState].item<double>();
|
||||
|
||||
// Multiply by the likelihood of each feature given the class
|
||||
for (auto& pair : nodes) {
|
||||
if (pair.first != className) {
|
||||
Node* node = pair.second;
|
||||
int featureValue = featureValues[pair.first];
|
||||
// // Multiply by the likelihood of each feature given the class
|
||||
// for (auto& pair : nodes) {
|
||||
// if (pair.first != className) {
|
||||
// Node* node = pair.second;
|
||||
// int featureValue = featureValues[pair.first];
|
||||
|
||||
// We use the class as the parent state to index into the CPT
|
||||
classProbabilities[classState] *= node->getCPT()[classState][featureValue].item<double>();
|
||||
}
|
||||
}
|
||||
}
|
||||
// // We use the class as the parent state to index into the CPT
|
||||
// classProbabilities[classState] *= node->getCPT()[classState][featureValue].item<double>();
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// Find the class with the maximum posterior probability
|
||||
auto maxElem = std::max_element(classProbabilities.begin(), classProbabilities.end());
|
||||
int predictedClass = std::distance(classProbabilities.begin(), maxElem);
|
||||
double maxProbability = *maxElem;
|
||||
// // Find the class with the maximum posterior probability
|
||||
// auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||
// int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||
// double maxProbability = *maxElem;
|
||||
|
||||
return std::make_pair(predictedClass, maxProbability);
|
||||
}
|
||||
// return make_pair(predictedClass, maxProbability);
|
||||
// }
|
||||
vector<int> Network::predict(const vector<vector<int>>& samples)
|
||||
{
|
||||
vector<int> predictions;
|
||||
@ -194,4 +182,37 @@ namespace bayesnet {
|
||||
}
|
||||
return (double)correct / y_pred.size();
|
||||
}
|
||||
pair<int, double> Network::predict_sample(const vector<int>& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size() != features.size()) {
|
||||
throw invalid_argument("Sample size (" + to_string(sample.size()) +
|
||||
") does not match the number of features (" + to_string(features.size()) + ")");
|
||||
}
|
||||
// Map the feature values to their corresponding nodes
|
||||
map<string, int> featureValues;
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
featureValues[features[i]] = sample[i];
|
||||
}
|
||||
|
||||
// For each possible class, calculate the posterior probability
|
||||
Network network = *this;
|
||||
vector<double> classProbabilities = eliminateVariables(network, featureValues);
|
||||
|
||||
// Normalize the probabilities to sum to 1
|
||||
double sum = accumulate(classProbabilities.begin(), classProbabilities.end(), 0.0);
|
||||
for (double& prob : classProbabilities) {
|
||||
prob /= sum;
|
||||
}
|
||||
// Find the class with the maximum posterior probability
|
||||
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||
double maxProbability = *maxElem;
|
||||
|
||||
return make_pair(predictedClass, maxProbability);
|
||||
}
|
||||
vector<double> eliminateVariables(network, featureValues)
|
||||
{
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -16,6 +16,7 @@ namespace bayesnet {
|
||||
int laplaceSmoothing;
|
||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||
pair<int, double> predict_sample(const vector<int>&);
|
||||
vector<double> eliminateVariables(Network&, const map<string, int>&);
|
||||
public:
|
||||
Network();
|
||||
Network(int);
|
||||
|
Loading…
Reference in New Issue
Block a user