Begin Ensemble

This commit is contained in:
Ricardo Montañana Gómez 2023-07-14 18:23:24 +02:00
parent e8b8fa29c8
commit 6a8aad5911
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
5 changed files with 112 additions and 10 deletions

View File

@ -80,16 +80,22 @@ namespace bayesnet {
}
Tensor BaseClassifier::predict(Tensor& X)
{
auto m_ = X.size(0);
auto n_ = X.size(1);
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
auto temp = X.index({ "...", i });
Xd[i] = vector<int>(temp.data_ptr<int>(), temp.data_ptr<int>() + m_);
auto n_models = models.size();
Tensor y_pred = torch::zeros({ X.size(0), n_models }, torch::kInt64);
for (auto i = 0; i < n_models; ++i) {
y_pred.index_put_({ "...", i }, models[i].predict(X));
}
auto yp = model.predict(Xd);
auto ypred = torch::tensor(yp, torch::kInt64);
return ypred;
auto y_pred_ = y_pred.accessor<int64_t, 2>();
vector<int> y_pred_final;
for (int i = 0; i < y_pred.size(0); ++i) {
vector<float> votes(states[className].size(), 0);
for (int j = 0; j < y_pred.size(1); ++j) {
votes[y_pred_[i][j]] += 1;
}
auto indices = argsort(votes);
y_pred_final.push_back(indices[0]);
}
return torch::tensor(y_pred_final, torch::kInt64);
}
float BaseClassifier::score(Tensor& X, Tensor& y)
{

View File

@ -1,4 +1,5 @@
#ifndef CLASSIFIERS_H
#define CLASSIFIERS_H
#include <torch/torch.h>
#include "Network.h"
#include "Metrics.hpp"

View File

@ -1,2 +1,2 @@
add_library(BayesNet Network.cc Node.cc Metrics.cc BaseClassifier.cc KDB.cc TAN.cc SPODE.cc)
add_library(BayesNet Network.cc Node.cc Metrics.cc BaseClassifier.cc KDB.cc TAN.cc SPODE.cc Ensemble.cc)
target_link_libraries(BayesNet "${TORCH_LIBRARIES}")

61
src/Ensemble.cc Normal file
View File

@ -0,0 +1,61 @@
#include "Ensemble.h"
namespace bayesnet {
using namespace std;
using namespace torch;
Ensemble::Ensemble(BaseClassifier& model) : model(model), models(vector<BaseClassifier>()), m(0), n(0), metrics(Metrics()) {}
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
{
dataset = torch::cat({ X, y.view({y.size(0), 1}) }, 1);
this->features = features;
this->className = className;
this->states = states;
auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes);
train();
return *this;
}
Ensemble& Ensemble::fit(Tensor& X, Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = X;
this->y = y;
auto sizes = X.sizes();
m = sizes[0];
n = sizes[1];
return build(features, className, states);
}
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = torch::zeros({ static_cast<int64_t>(X[0].size()), static_cast<int64_t>(X.size()) }, kInt64);
for (int i = 0; i < X.size(); ++i) {
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt64));
}
this->y = torch::tensor(y, kInt64);
return build(features, className, states);
}
Tensor Ensemble::predict(Tensor& X)
{
auto m_ = X.size(0);
auto n_ = X.size(1);
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
auto temp = X.index({ "...", i });
Xd[i] = vector<int>(temp.data_ptr<int>(), temp.data_ptr<int>() + m_);
}
auto yp = model.predict(Xd);
auto ypred = torch::tensor(yp, torch::kInt64);
return ypred;
}
float Ensemble::score(Tensor& X, Tensor& y)
{
Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
vector<string> Ensemble::show()
{
return model.show();
}
}

34
src/Ensemble.h Normal file
View File

@ -0,0 +1,34 @@
#ifndef ENSEMBLE_H
#define ENSEMBLE_H
#include <torch/torch.h>
#include "BaseClassifier.h"
#include "Metrics.hpp"
using namespace std;
using namespace torch;
namespace bayesnet {
class Ensemble {
private:
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected:
BaseClassifier& model;
vector<BaseClassifier> models;
int m, n; // m: number of samples, n: number of features
Tensor X;
Tensor y;
Tensor dataset;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
void virtual train() = 0;
public:
Ensemble(BaseClassifier& model);
Ensemble& fit(Tensor& X, Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states);
Ensemble& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states);
Tensor predict(Tensor& X);
float score(Tensor& X, Tensor& y);
vector<string> show();
};
}
#endif