Begin Ensemble
This commit is contained in:
parent
e8b8fa29c8
commit
6a8aad5911
@ -80,16 +80,22 @@ namespace bayesnet {
|
||||
}
|
||||
Tensor BaseClassifier::predict(Tensor& X)
|
||||
{
|
||||
auto m_ = X.size(0);
|
||||
auto n_ = X.size(1);
|
||||
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
|
||||
for (auto i = 0; i < n_; i++) {
|
||||
auto temp = X.index({ "...", i });
|
||||
Xd[i] = vector<int>(temp.data_ptr<int>(), temp.data_ptr<int>() + m_);
|
||||
auto n_models = models.size();
|
||||
Tensor y_pred = torch::zeros({ X.size(0), n_models }, torch::kInt64);
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
y_pred.index_put_({ "...", i }, models[i].predict(X));
|
||||
}
|
||||
auto yp = model.predict(Xd);
|
||||
auto ypred = torch::tensor(yp, torch::kInt64);
|
||||
return ypred;
|
||||
auto y_pred_ = y_pred.accessor<int64_t, 2>();
|
||||
vector<int> y_pred_final;
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
vector<float> votes(states[className].size(), 0);
|
||||
for (int j = 0; j < y_pred.size(1); ++j) {
|
||||
votes[y_pred_[i][j]] += 1;
|
||||
}
|
||||
auto indices = argsort(votes);
|
||||
y_pred_final.push_back(indices[0]);
|
||||
}
|
||||
return torch::tensor(y_pred_final, torch::kInt64);
|
||||
}
|
||||
float BaseClassifier::score(Tensor& X, Tensor& y)
|
||||
{
|
||||
|
@ -1,4 +1,5 @@
|
||||
#ifndef CLASSIFIERS_H
|
||||
#define CLASSIFIERS_H
|
||||
#include <torch/torch.h>
|
||||
#include "Network.h"
|
||||
#include "Metrics.hpp"
|
||||
|
@ -1,2 +1,2 @@
|
||||
add_library(BayesNet Network.cc Node.cc Metrics.cc BaseClassifier.cc KDB.cc TAN.cc SPODE.cc)
|
||||
add_library(BayesNet Network.cc Node.cc Metrics.cc BaseClassifier.cc KDB.cc TAN.cc SPODE.cc Ensemble.cc)
|
||||
target_link_libraries(BayesNet "${TORCH_LIBRARIES}")
|
61
src/Ensemble.cc
Normal file
61
src/Ensemble.cc
Normal file
@ -0,0 +1,61 @@
|
||||
#include "Ensemble.h"
|
||||
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
|
||||
Ensemble::Ensemble(BaseClassifier& model) : model(model), models(vector<BaseClassifier>()), m(0), n(0), metrics(Metrics()) {}
|
||||
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
|
||||
dataset = torch::cat({ X, y.view({y.size(0), 1}) }, 1);
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
this->states = states;
|
||||
auto n_classes = states[className].size();
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
train();
|
||||
return *this;
|
||||
}
|
||||
Ensemble& Ensemble::fit(Tensor& X, Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
this->X = X;
|
||||
this->y = y;
|
||||
auto sizes = X.sizes();
|
||||
m = sizes[0];
|
||||
n = sizes[1];
|
||||
return build(features, className, states);
|
||||
}
|
||||
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||
{
|
||||
this->X = torch::zeros({ static_cast<int64_t>(X[0].size()), static_cast<int64_t>(X.size()) }, kInt64);
|
||||
for (int i = 0; i < X.size(); ++i) {
|
||||
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt64));
|
||||
}
|
||||
this->y = torch::tensor(y, kInt64);
|
||||
return build(features, className, states);
|
||||
}
|
||||
Tensor Ensemble::predict(Tensor& X)
|
||||
{
|
||||
auto m_ = X.size(0);
|
||||
auto n_ = X.size(1);
|
||||
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
|
||||
for (auto i = 0; i < n_; i++) {
|
||||
auto temp = X.index({ "...", i });
|
||||
Xd[i] = vector<int>(temp.data_ptr<int>(), temp.data_ptr<int>() + m_);
|
||||
}
|
||||
auto yp = model.predict(Xd);
|
||||
auto ypred = torch::tensor(yp, torch::kInt64);
|
||||
return ypred;
|
||||
}
|
||||
float Ensemble::score(Tensor& X, Tensor& y)
|
||||
{
|
||||
Tensor y_pred = predict(X);
|
||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||
}
|
||||
vector<string> Ensemble::show()
|
||||
{
|
||||
return model.show();
|
||||
}
|
||||
|
||||
}
|
34
src/Ensemble.h
Normal file
34
src/Ensemble.h
Normal file
@ -0,0 +1,34 @@
|
||||
#ifndef ENSEMBLE_H
|
||||
#define ENSEMBLE_H
|
||||
#include <torch/torch.h>
|
||||
#include "BaseClassifier.h"
|
||||
#include "Metrics.hpp"
|
||||
using namespace std;
|
||||
using namespace torch;
|
||||
|
||||
namespace bayesnet {
|
||||
class Ensemble {
|
||||
private:
|
||||
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
|
||||
protected:
|
||||
BaseClassifier& model;
|
||||
vector<BaseClassifier> models;
|
||||
int m, n; // m: number of samples, n: number of features
|
||||
Tensor X;
|
||||
Tensor y;
|
||||
Tensor dataset;
|
||||
Metrics metrics;
|
||||
vector<string> features;
|
||||
string className;
|
||||
map<string, vector<int>> states;
|
||||
void virtual train() = 0;
|
||||
public:
|
||||
Ensemble(BaseClassifier& model);
|
||||
Ensemble& fit(Tensor& X, Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states);
|
||||
Ensemble& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states);
|
||||
Tensor predict(Tensor& X);
|
||||
float score(Tensor& X, Tensor& y);
|
||||
vector<string> show();
|
||||
};
|
||||
}
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user