diff --git a/.vscode/launch.json b/.vscode/launch.json index 7241ae2..ba01ca6 100644 --- a/.vscode/launch.json +++ b/.vscode/launch.json @@ -25,7 +25,7 @@ "program": "${workspaceFolder}/build/src/Platform/main", "args": [ "-m", - "AODELd", + "SPODELd", "-p", "/Users/rmontanana/Code/discretizbench/datasets", "--stratified", diff --git a/src/BayesNet/AODE.cc b/src/BayesNet/AODE.cc index 6ec9361..7e6a95f 100644 --- a/src/BayesNet/AODE.cc +++ b/src/BayesNet/AODE.cc @@ -2,14 +2,14 @@ namespace bayesnet { AODE::AODE() : Ensemble() {} - void AODE::train() + void AODE::buildModel() { models.clear(); for (int i = 0; i < features.size(); ++i) { models.push_back(std::make_unique(i)); } } - vector AODE::graph(const string& title) + vector AODE::graph(const string& title) const { return Ensemble::graph(title); } diff --git a/src/BayesNet/AODE.h b/src/BayesNet/AODE.h index 9a698e1..3d58851 100644 --- a/src/BayesNet/AODE.h +++ b/src/BayesNet/AODE.h @@ -5,11 +5,11 @@ namespace bayesnet { class AODE : public Ensemble { protected: - void train() override; + void buildModel() override; public: AODE(); virtual ~AODE() {}; - vector graph(const string& title = "AODE") override; + vector graph(const string& title = "AODE") const override; }; } #endif \ No newline at end of file diff --git a/src/BayesNet/AODELd.cc b/src/BayesNet/AODELd.cc index 861aa71..9f36ed2 100644 --- a/src/BayesNet/AODELd.cc +++ b/src/BayesNet/AODELd.cc @@ -1,33 +1,39 @@ #include "AODELd.h" +#include "Models.h" namespace bayesnet { using namespace std; - AODELd::AODELd() : Ensemble(), Proposal(Ensemble::Xv, Ensemble::yv, features, className) {} + AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {} AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector& features_, string className_, map>& states_) { + // This first part should go in a Classifier method called fit_local_discretization o fit_float... features = features_; className = className_; - states = states_; - train(); - for (const auto& model : models) { - model->fit(X_, y_, features_, className_, states_); - } - n_models = models.size(); - fitted = true; + Xf = X_; + y = y_; + // Fills vectors Xv & yv with the data from tensors X_ (discretized) & y + states = fit_local_discretization(y); + // We have discretized the input data + // 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network + Ensemble::fit(dataset, features, className, states); return *this; + } - void AODELd::train() + void AODELd::buildModel() { models.clear(); for (int i = 0; i < features.size(); ++i) { models.push_back(std::make_unique(i)); } + n_models = models.size(); } - Tensor AODELd::predict(Tensor& X) + void AODELd::trainModel() { - return Ensemble::predict(X); + for (const auto& model : models) { + model->fit(Xf, y, features, className, states); + } } - vector AODELd::graph(const string& name) + vector AODELd::graph(const string& name) const { return Ensemble::graph(name); } diff --git a/src/BayesNet/AODELd.h b/src/BayesNet/AODELd.h index 33a0dff..14be0c4 100644 --- a/src/BayesNet/AODELd.h +++ b/src/BayesNet/AODELd.h @@ -7,13 +7,14 @@ namespace bayesnet { using namespace std; class AODELd : public Ensemble, public Proposal { + protected: + void trainModel() override; + void buildModel() override; public: AODELd(); + AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector& features_, string className_, map>& states_) override; virtual ~AODELd() = default; - AODELd& fit(torch::Tensor& X, torch::Tensor& y, vector& features, string className, map>& states) override; - vector graph(const string& name = "AODE") override; - Tensor predict(Tensor& X) override; - void train() override; + vector graph(const string& name = "AODE") const override; static inline string version() { return "0.0.1"; }; }; } diff --git a/src/BayesNet/BaseClassifier.h b/src/BayesNet/BaseClassifier.h index 0ae9a1d..ff202e1 100644 --- a/src/BayesNet/BaseClassifier.h +++ b/src/BayesNet/BaseClassifier.h @@ -5,24 +5,27 @@ namespace bayesnet { using namespace std; class BaseClassifier { + protected: + virtual void trainModel() = 0; public: // X is nxm vector, y is nx1 vector virtual BaseClassifier& fit(vector>& X, vector& y, vector& features, string className, map>& states) = 0; // X is nxm tensor, y is nx1 tensor virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector& features, string className, map>& states) = 0; + virtual BaseClassifier& fit(torch::Tensor& dataset, vector& features, string className, map>& states) = 0; virtual ~BaseClassifier() = default; torch::Tensor virtual predict(torch::Tensor& X) = 0; vector virtual predict(vector>& X) = 0; float virtual score(vector>& X, vector& y) = 0; float virtual score(torch::Tensor& X, torch::Tensor& y) = 0; - int virtual getNumberOfNodes() = 0; - int virtual getNumberOfEdges() = 0; - int virtual getNumberOfStates() = 0; - vector virtual show() = 0; - vector virtual graph(const string& title = "") = 0; + int virtual getNumberOfNodes()const = 0; + int virtual getNumberOfEdges()const = 0; + int virtual getNumberOfStates() const = 0; + vector virtual show() const = 0; + vector virtual graph(const string& title = "") const = 0; const string inline getVersion() const { return "0.1.0"; }; vector virtual topological_order() = 0; - void virtual dump_cpt() = 0; + void virtual dump_cpt()const = 0; }; } #endif \ No newline at end of file diff --git a/src/BayesNet/BayesMetrics.cc b/src/BayesNet/BayesMetrics.cc index c80fb65..8952ead 100644 --- a/src/BayesNet/BayesMetrics.cc +++ b/src/BayesNet/BayesMetrics.cc @@ -2,7 +2,7 @@ #include "Mst.h" namespace bayesnet { //samples is nxm tensor used to fit the model - Metrics::Metrics(torch::Tensor& samples, vector& features, string& className, int classNumStates) + Metrics::Metrics(const torch::Tensor& samples, const vector& features, const string& className, const int classNumStates) : samples(samples) , features(features) , className(className) @@ -76,7 +76,7 @@ namespace bayesnet { std::vector v(matrix.data_ptr(), matrix.data_ptr() + matrix.numel()); return v; } - double Metrics::entropy(torch::Tensor& feature) + double Metrics::entropy(const torch::Tensor& feature) { torch::Tensor counts = feature.bincount(); int totalWeight = counts.sum().item(); @@ -86,7 +86,7 @@ namespace bayesnet { return entropy.nansum().item(); } // H(Y|X) = sum_{x in X} p(x) H(Y|X=x) - double Metrics::conditionalEntropy(torch::Tensor& firstFeature, torch::Tensor& secondFeature) + double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature) { int numSamples = firstFeature.sizes()[0]; torch::Tensor featureCounts = secondFeature.bincount(); @@ -115,7 +115,7 @@ namespace bayesnet { return entropyValue; } // I(X;Y) = H(Y) - H(Y|X) - double Metrics::mutualInformation(torch::Tensor& firstFeature, torch::Tensor& secondFeature) + double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature) { return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature); } @@ -124,7 +124,7 @@ namespace bayesnet { and the indices of the weights as nodes of this square matrix using Kruskal algorithm */ - vector> Metrics::maximumSpanningTree(vector features, Tensor& weights, int root) + vector> Metrics::maximumSpanningTree(const vector& features, const Tensor& weights, const int root) { auto mst = MST(features, weights, root); return mst.maximumSpanningTree(); diff --git a/src/BayesNet/BayesMetrics.h b/src/BayesNet/BayesMetrics.h index 183cfcc..2a2fff3 100644 --- a/src/BayesNet/BayesMetrics.h +++ b/src/BayesNet/BayesMetrics.h @@ -14,15 +14,15 @@ namespace bayesnet { int classNumStates = 0; public: Metrics() = default; - Metrics(Tensor&, vector&, string&, int); + Metrics(const Tensor&, const vector&, const string&, const int); Metrics(const vector>&, const vector&, const vector&, const string&, const int); - double entropy(Tensor&); - double conditionalEntropy(Tensor&, Tensor&); - double mutualInformation(Tensor&, Tensor&); + double entropy(const Tensor&); + double conditionalEntropy(const Tensor&, const Tensor&); + double mutualInformation(const Tensor&, const Tensor&); vector conditionalEdgeWeights(); // To use in Python Tensor conditionalEdge(); vector> doCombinations(const vector&); - vector> maximumSpanningTree(vector features, Tensor& weights, int root); + vector> maximumSpanningTree(const vector& features, const Tensor& weights, const int root); }; } #endif \ No newline at end of file diff --git a/src/BayesNet/CMakeLists.txt b/src/BayesNet/CMakeLists.txt index 5df47d5..a2b9126 100644 --- a/src/BayesNet/CMakeLists.txt +++ b/src/BayesNet/CMakeLists.txt @@ -1,5 +1,7 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp) include_directories(${BayesNet_SOURCE_DIR}/lib/Files) +include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet) +include_directories(${BayesNet_SOURCE_DIR}/src/Platform) add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc - KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc) + KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc) target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}") \ No newline at end of file diff --git a/src/BayesNet/Classifier.cc b/src/BayesNet/Classifier.cc index 4d9a4c7..b3317f4 100644 --- a/src/BayesNet/Classifier.cc +++ b/src/BayesNet/Classifier.cc @@ -7,61 +7,65 @@ namespace bayesnet { Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {} Classifier& Classifier::build(vector& features, string className, map>& states) { - Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1); - samples = torch::cat({ X, ytmp }, 0); this->features = features; this->className = className; this->states = states; + m = dataset.size(1); + n = dataset.size(0) - 1; checkFitParameters(); auto n_classes = states[className].size(); - metrics = Metrics(samples, features, className, n_classes); + metrics = Metrics(dataset, features, className, n_classes); model.initialize(); - train(); - if (Xv.empty()) { - // fit with tensors - model.fit(X, y, features, className); - } else { - // fit with vectors - model.fit(Xv, yv, features, className); - } + buildModel(); + trainModel(); fitted = true; return *this; } + + void Classifier::buildDataset(Tensor& ytmp) + { + try { + auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1); + dataset = torch::cat({ dataset, yresized }, 0); + } + catch (const std::exception& e) { + std::cerr << e.what() << '\n'; + cout << "X dimensions: " << dataset.sizes() << "\n"; + cout << "y dimensions: " << ytmp.sizes() << "\n"; + exit(1); + } + } + void Classifier::trainModel() + { + model.fit(dataset, features, className, states); + } // X is nxm where n is the number of features and m the number of samples Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector& features, string className, map>& states) { - this->X = X; - this->y = y; - Xv = vector>(); - yv = vector(y.data_ptr(), y.data_ptr() + y.size(0)); + dataset = X; + buildDataset(y); return build(features, className, states); } - void Classifier::generateTensorXFromVector() - { - X = torch::zeros({ static_cast(Xv.size()), static_cast(Xv[0].size()) }, kInt32); - for (int i = 0; i < Xv.size(); ++i) { - X.index_put_({ i, "..." }, torch::tensor(Xv[i], kInt32)); - } - } // X is nxm where n is the number of features and m the number of samples Classifier& Classifier::fit(vector>& X, vector& y, vector& features, string className, map>& states) { - Xv = X; - generateTensorXFromVector(); - this->y = torch::tensor(y, kInt32); - yv = y; + dataset = torch::zeros({ static_cast(X.size()), static_cast(X[0].size()) }, kInt32); + for (int i = 0; i < X.size(); ++i) { + dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32)); + } + auto ytmp = torch::tensor(y, kInt32); + buildDataset(ytmp); + return build(features, className, states); + } + Classifier& Classifier::fit(torch::Tensor& dataset, vector& features, string className, map>& states) + { + this->dataset = dataset; return build(features, className, states); } void Classifier::checkFitParameters() { - auto sizes = X.sizes(); - m = sizes[1]; - n = sizes[0]; - if (m != y.size(0)) { - throw invalid_argument("X and y must have the same number of samples"); - } if (n != features.size()) { - throw invalid_argument("X and features must have the same number of features"); + throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features"); } if (states.find(className) == states.end()) { throw invalid_argument("className not found in states"); @@ -108,7 +112,7 @@ namespace bayesnet { } return model.score(X, y); } - vector Classifier::show() + vector Classifier::show() const { return model.show(); } @@ -120,16 +124,16 @@ namespace bayesnet { } model.addNode(className); } - int Classifier::getNumberOfNodes() + int Classifier::getNumberOfNodes() const { // Features does not include class return fitted ? model.getFeatures().size() + 1 : 0; } - int Classifier::getNumberOfEdges() + int Classifier::getNumberOfEdges() const { - return fitted ? model.getEdges().size() : 0; + return fitted ? model.getNumEdges() : 0; } - int Classifier::getNumberOfStates() + int Classifier::getNumberOfStates() const { return fitted ? model.getStates() : 0; } @@ -137,9 +141,8 @@ namespace bayesnet { { return model.topological_sort(); } - void Classifier::dump_cpt() + void Classifier::dump_cpt() const { model.dump_cpt(); } - } \ No newline at end of file diff --git a/src/BayesNet/Classifier.h b/src/BayesNet/Classifier.h index 03c46c6..2e736a3 100644 --- a/src/BayesNet/Classifier.h +++ b/src/BayesNet/Classifier.h @@ -10,39 +10,37 @@ using namespace torch; namespace bayesnet { class Classifier : public BaseClassifier { private: - bool fitted; + void buildDataset(torch::Tensor& y); Classifier& build(vector& features, string className, map>& states); protected: + bool fitted; Network model; int m, n; // m: number of samples, n: number of features - Tensor X; // nxm tensor - vector> Xv; // nxm vector - Tensor y; - vector yv; - Tensor samples; // (n+1)xm tensor + Tensor dataset; // (n+1)xm tensor Metrics metrics; vector features; string className; map> states; void checkFitParameters(); - void generateTensorXFromVector(); - virtual void train() = 0; + virtual void buildModel() = 0; + void trainModel() override; public: Classifier(Network model); virtual ~Classifier() = default; Classifier& fit(vector>& X, vector& y, vector& features, string className, map>& states) override; Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector& features, string className, map>& states) override; + Classifier& fit(torch::Tensor& dataset, vector& features, string className, map>& states) override; void addNodes(); - int getNumberOfNodes() override; - int getNumberOfEdges() override; - int getNumberOfStates() override; + int getNumberOfNodes() const override; + int getNumberOfEdges() const override; + int getNumberOfStates() const override; Tensor predict(Tensor& X) override; vector predict(vector>& X) override; float score(Tensor& X, Tensor& y) override; float score(vector>& X, vector& y) override; - vector show() override; - vector topological_order() override; - void dump_cpt() override; + vector show() const override; + vector topological_order() override; + void dump_cpt() const override; }; } #endif diff --git a/src/BayesNet/Ensemble.cc b/src/BayesNet/Ensemble.cc index 8cbd17c..34c6894 100644 --- a/src/BayesNet/Ensemble.cc +++ b/src/BayesNet/Ensemble.cc @@ -3,54 +3,15 @@ namespace bayesnet { using namespace torch; - Ensemble::Ensemble() : n_models(0), metrics(Metrics()), fitted(false) {} - Ensemble& Ensemble::build(vector& features, string className, map>& states) + Ensemble::Ensemble() : Classifier(Network()) {} + + void Ensemble::trainModel() { - Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1); - samples = torch::cat({ X, ytmp }, 0); - this->features = features; - this->className = className; - this->states = states; - auto n_classes = states[className].size(); - metrics = Metrics(samples, features, className, n_classes); - // Build models - train(); - // Train models n_models = models.size(); for (auto i = 0; i < n_models; ++i) { - if (Xv.empty()) { - // fit with tensors - models[i]->fit(X, y, features, className, states); - } else { - // fit with vectors - models[i]->fit(Xv, yv, features, className, states); - } + // fit with vectors + models[i]->fit(dataset, features, className, states); } - fitted = true; - return *this; - } - void Ensemble::generateTensorXFromVector() - { - X = torch::zeros({ static_cast(Xv.size()), static_cast(Xv[0].size()) }, kInt32); - for (int i = 0; i < Xv.size(); ++i) { - X.index_put_({ i, "..." }, torch::tensor(Xv[i], kInt32)); - } - } - Ensemble& Ensemble::fit(torch::Tensor& X, torch::Tensor& y, vector& features, string className, map>& states) - { - this->X = X; - this->y = y; - Xv = vector>(); - yv = vector(y.data_ptr(), y.data_ptr() + y.size(0)); - return build(features, className, states); - } - Ensemble& Ensemble::fit(vector>& X, vector& y, vector& features, string className, map>& states) - { - Xv = X; - generateTensorXFromVector(); - this->y = torch::tensor(y, kInt32); - yv = y; - return build(features, className, states); } vector Ensemble::voting(Tensor& y_pred) { @@ -132,9 +93,8 @@ namespace bayesnet { } } return (double)correct / y_pred.size(); - } - vector Ensemble::show() + vector Ensemble::show() const { auto result = vector(); for (auto i = 0; i < n_models; ++i) { @@ -143,7 +103,7 @@ namespace bayesnet { } return result; } - vector Ensemble::graph(const string& title) + vector Ensemble::graph(const string& title) const { auto result = vector(); for (auto i = 0; i < n_models; ++i) { @@ -152,7 +112,7 @@ namespace bayesnet { } return result; } - int Ensemble::getNumberOfNodes() + int Ensemble::getNumberOfNodes() const { int nodes = 0; for (auto i = 0; i < n_models; ++i) { @@ -160,7 +120,7 @@ namespace bayesnet { } return nodes; } - int Ensemble::getNumberOfEdges() + int Ensemble::getNumberOfEdges() const { int edges = 0; for (auto i = 0; i < n_models; ++i) { @@ -168,7 +128,7 @@ namespace bayesnet { } return edges; } - int Ensemble::getNumberOfStates() + int Ensemble::getNumberOfStates() const { int nstates = 0; for (auto i = 0; i < n_models; ++i) { diff --git a/src/BayesNet/Ensemble.h b/src/BayesNet/Ensemble.h index 322032e..f0d750b 100644 --- a/src/BayesNet/Ensemble.h +++ b/src/BayesNet/Ensemble.h @@ -8,44 +8,31 @@ using namespace std; using namespace torch; namespace bayesnet { - class Ensemble : public BaseClassifier { + class Ensemble : public Classifier { private: Ensemble& build(vector& features, string className, map>& states); protected: unsigned n_models; - bool fitted; vector> models; - Tensor X; - vector> Xv; - Tensor y; - vector yv; - Tensor samples; - Metrics metrics; - vector features; - string className; - map> states; - void virtual train() = 0; + void trainModel() override; vector voting(Tensor& y_pred); - void generateTensorXFromVector(); public: Ensemble(); virtual ~Ensemble() = default; - Ensemble& fit(vector>& X, vector& y, vector& features, string className, map>& states) override; - Ensemble& fit(torch::Tensor& X, torch::Tensor& y, vector& features, string className, map>& states) override; Tensor predict(Tensor& X) override; vector predict(vector>& X) override; float score(Tensor& X, Tensor& y) override; float score(vector>& X, vector& y) override; - int getNumberOfNodes() override; - int getNumberOfEdges() override; - int getNumberOfStates() override; - vector show() override; - vector graph(const string& title) override; - vector topological_order() override + int getNumberOfNodes() const override; + int getNumberOfEdges() const override; + int getNumberOfStates() const override; + vector show() const override; + vector graph(const string& title) const override; + vector topological_order() override { return vector(); } - void dump_cpt() override + void dump_cpt() const override { } }; diff --git a/src/BayesNet/KDB.cc b/src/BayesNet/KDB.cc index a0ab434..74566b0 100644 --- a/src/BayesNet/KDB.cc +++ b/src/BayesNet/KDB.cc @@ -4,7 +4,7 @@ namespace bayesnet { using namespace torch; KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {} - void KDB::train() + void KDB::buildModel() { /* 1. For each feature Xi, compute mutual information, I(X;C), @@ -28,9 +28,10 @@ namespace bayesnet { // 1. For each feature Xi, compute mutual information, I(X;C), // where C is the class. addNodes(); + const Tensor& y = dataset.index({ -1, "..." }); vector mi; for (auto i = 0; i < features.size(); i++) { - Tensor firstFeature = X.index({ i, "..." }); + Tensor firstFeature = dataset.index({ i, "..." }); mi.push_back(metrics.mutualInformation(firstFeature, y)); } // 2. Compute class conditional mutual information I(Xi;XjIC), f or each @@ -78,7 +79,7 @@ namespace bayesnet { exit_cond = num == n_edges || candidates.size(0) == 0; } } - vector KDB::graph(const string& title) + vector KDB::graph(const string& title) const { string header{ title }; if (title == "KDB") { diff --git a/src/BayesNet/KDB.h b/src/BayesNet/KDB.h index 11a69d7..e7af8c5 100644 --- a/src/BayesNet/KDB.h +++ b/src/BayesNet/KDB.h @@ -11,11 +11,11 @@ namespace bayesnet { float theta; void add_m_edges(int idx, vector& S, Tensor& weights); protected: - void train() override; + void buildModel() override; public: explicit KDB(int k, float theta = 0.03); virtual ~KDB() {}; - vector graph(const string& name = "KDB") override; + vector graph(const string& name = "KDB") const override; }; } #endif \ No newline at end of file diff --git a/src/BayesNet/KDBLd.cc b/src/BayesNet/KDBLd.cc index d2cbed4..724a053 100644 --- a/src/BayesNet/KDBLd.cc +++ b/src/BayesNet/KDBLd.cc @@ -2,7 +2,7 @@ namespace bayesnet { using namespace std; - KDBLd::KDBLd(int k) : KDB(k), Proposal(KDB::Xv, KDB::yv, features, className) {} + KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {} KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector& features_, string className_, map>& states_) { // This first part should go in a Classifier method called fit_local_discretization o fit_float... @@ -11,16 +11,11 @@ namespace bayesnet { Xf = X_; y = y_; // Fills vectors Xv & yv with the data from tensors X_ (discretized) & y - fit_local_discretization(states, y); - generateTensorXFromVector(); + states = fit_local_discretization(y); // We have discretized the input data // 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network - KDB::fit(KDB::Xv, KDB::yv, features, className, states); + KDB::fit(dataset, features, className, states); localDiscretizationProposal(states, model); - generateTensorXFromVector(); - Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1); - samples = torch::cat({ X, ytmp }, 0); - model.fit(KDB::Xv, KDB::yv, features, className); return *this; } Tensor KDBLd::predict(Tensor& X) @@ -28,7 +23,7 @@ namespace bayesnet { auto Xt = prepareX(X); return KDB::predict(Xt); } - vector KDBLd::graph(const string& name) + vector KDBLd::graph(const string& name) const { return KDB::graph(name); } diff --git a/src/BayesNet/KDBLd.h b/src/BayesNet/KDBLd.h index b91999b..50a1b95 100644 --- a/src/BayesNet/KDBLd.h +++ b/src/BayesNet/KDBLd.h @@ -11,7 +11,7 @@ namespace bayesnet { explicit KDBLd(int k); virtual ~KDBLd() = default; KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector& features, string className, map>& states) override; - vector graph(const string& name = "KDB") override; + vector graph(const string& name = "KDB") const override; Tensor predict(Tensor& X) override; static inline string version() { return "0.0.1"; }; }; diff --git a/src/BayesNet/Mst.cc b/src/BayesNet/Mst.cc index 3a48d05..b915d76 100644 --- a/src/BayesNet/Mst.cc +++ b/src/BayesNet/Mst.cc @@ -94,7 +94,7 @@ namespace bayesnet { return result; } - MST::MST(vector& features, Tensor& weights, int root) : features(features), weights(weights), root(root) {} + MST::MST(const vector& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {} vector> MST::maximumSpanningTree() { auto num_features = features.size(); diff --git a/src/BayesNet/Mst.h b/src/BayesNet/Mst.h index 71a46a5..e0f3372 100644 --- a/src/BayesNet/Mst.h +++ b/src/BayesNet/Mst.h @@ -13,7 +13,7 @@ namespace bayesnet { int root = 0; public: MST() = default; - MST(vector& features, Tensor& weights, int root); + MST(const vector& features, const Tensor& weights, const int root); vector> maximumSpanningTree(); }; class Graph { diff --git a/src/BayesNet/Network.cc b/src/BayesNet/Network.cc index 2a37de4..8a4106c 100644 --- a/src/BayesNet/Network.cc +++ b/src/BayesNet/Network.cc @@ -20,7 +20,6 @@ namespace bayesnet { classNumStates = 0; fitted = false; nodes.clear(); - dataset.clear(); samples = torch::Tensor(); } float Network::getmaxThreads() @@ -44,15 +43,15 @@ namespace bayesnet { } nodes[name] = std::make_unique(name); } - vector Network::getFeatures() + vector Network::getFeatures() const { return features; } - int Network::getClassNumStates() + int Network::getClassNumStates() const { return classNumStates; } - int Network::getStates() + int Network::getStates() const { int result = 0; for (auto& node : nodes) { @@ -60,7 +59,7 @@ namespace bayesnet { } return result; } - string Network::getClassName() + string Network::getClassName() const { return className; } @@ -105,7 +104,7 @@ namespace bayesnet { { return nodes; } - void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector& featureNames, const string& className) + void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector& featureNames, const string& className, const map>& states) { if (n_samples != n_samples_y) { throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")"); @@ -123,50 +122,54 @@ namespace bayesnet { if (find(features.begin(), features.end(), feature) == features.end()) { throw invalid_argument("Feature " + feature + " not found in Network::features"); } + if (states.find(feature) == states.end()) { + throw invalid_argument("Feature " + feature + " not found in states"); + } } } - void Network::setStates() + void Network::setStates(const map>& states) { // Set states to every Node in the network for (int i = 0; i < features.size(); ++i) { - nodes[features[i]]->setNumStates(static_cast(torch::max(samples.index({ i, "..." })).item()) + 1); + nodes[features[i]]->setNumStates(states.at(features[i]).size()); } classNumStates = nodes[className]->getNumStates(); } // X comes in nxm, where n is the number of features and m the number of samples - void Network::fit(torch::Tensor& X, torch::Tensor& y, const vector& featureNames, const string& className) + void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector& featureNames, const string& className, const map>& states) { - checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className); + checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states); this->className = className; - dataset.clear(); Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1); samples = torch::cat({ X , ytmp }, 0); for (int i = 0; i < featureNames.size(); ++i) { auto row_feature = X.index({ i, "..." }); - dataset[featureNames[i]] = vector(row_feature.data_ptr(), row_feature.data_ptr() + row_feature.size(0));; } - dataset[className] = vector(y.data_ptr(), y.data_ptr() + y.size(0)); - completeFit(); + completeFit(states); + } + void Network::fit(const torch::Tensor& samples, const vector& featureNames, const string& className, const map>& states) + { + checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states); + this->className = className; + this->samples = samples; + completeFit(states); } // input_data comes in nxm, where n is the number of features and m the number of samples - void Network::fit(const vector>& input_data, const vector& labels, const vector& featureNames, const string& className) + void Network::fit(const vector>& input_data, const vector& labels, const vector& featureNames, const string& className, const map>& states) { - checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className); + checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states); this->className = className; - dataset.clear(); - // Build dataset & tensor of samples (nxm) (n+1 because of the class) + // Build tensor of samples (nxm) (n+1 because of the class) samples = torch::zeros({ static_cast(input_data.size() + 1), static_cast(input_data[0].size()) }, torch::kInt32); for (int i = 0; i < featureNames.size(); ++i) { - dataset[featureNames[i]] = input_data[i]; samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32)); } - dataset[className] = labels; samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32)); - completeFit(); + completeFit(states); } - void Network::completeFit() + void Network::completeFit(const map>& states) { - setStates(); + setStates(states); int maxThreadsRunning = static_cast(std::thread::hardware_concurrency() * maxThreads); if (maxThreadsRunning < 1) { maxThreadsRunning = 1; @@ -188,7 +191,7 @@ namespace bayesnet { auto& pair = *std::next(nodes.begin(), nextNodeIndex); ++nextNodeIndex; lock.unlock(); - pair.second->computeCPT(dataset, laplaceSmoothing); + pair.second->computeCPT(samples, features, laplaceSmoothing); lock.lock(); nodes[pair.first] = std::move(pair.second); lock.unlock(); @@ -212,7 +215,7 @@ namespace bayesnet { torch::Tensor result; result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64); for (int i = 0; i < samples.size(1); ++i) { - auto sample = samples.index({ "...", i }); + const Tensor sample = samples.index({ "...", i }); auto psample = predict_sample(sample); auto temp = torch::tensor(psample, torch::kFloat64); // result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64)); @@ -328,12 +331,12 @@ namespace bayesnet { mutex mtx; for (int i = 0; i < classNumStates; ++i) { threads.emplace_back([this, &result, &evidence, i, &mtx]() { - auto completeEvidence = map(evidence); - completeEvidence[getClassName()] = i; + auto completeEvidence = map(evidence); + completeEvidence[getClassName()] = i; double factor = computeFactor(completeEvidence); lock_guard lock(mtx); result[i] = factor; - }); + }); } for (auto& thread : threads) { thread.join(); @@ -343,7 +346,7 @@ namespace bayesnet { transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; }); return result; } - vector Network::show() + vector Network::show() const { vector result; // Draw the network @@ -356,7 +359,7 @@ namespace bayesnet { } return result; } - vector Network::graph(const string& title) + vector Network::graph(const string& title) const { auto output = vector(); auto prefix = "digraph BayesNet {\nlabel=> Network::getEdges() + vector> Network::getEdges() const { auto edges = vector>(); for (const auto& node : nodes) { @@ -382,6 +385,10 @@ namespace bayesnet { } return edges; } + int Network::getNumEdges() const + { + return getEdges().size(); + } vector Network::topological_sort() { /* Check if al the fathers of every node are before the node */ @@ -420,7 +427,7 @@ namespace bayesnet { } return result; } - void Network::dump_cpt() + void Network::dump_cpt() const { for (auto& node : nodes) { cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl; diff --git a/src/BayesNet/Network.h b/src/BayesNet/Network.h index b27125c..d8db620 100644 --- a/src/BayesNet/Network.h +++ b/src/BayesNet/Network.h @@ -8,11 +8,10 @@ namespace bayesnet { class Network { private: map> nodes; - map> dataset; bool fitted; float maxThreads = 0.95; int classNumStates; - vector features; // Including class + vector features; // Including classname string className; int laplaceSmoothing = 1; torch::Tensor samples; // nxm tensor used to fit the model @@ -21,13 +20,9 @@ namespace bayesnet { vector predict_sample(const torch::Tensor&); vector exactInference(map&); double computeFactor(map&); - double mutual_info(torch::Tensor&, torch::Tensor&); - double entropy(torch::Tensor&); - double conditionalEntropy(torch::Tensor&, torch::Tensor&); - double mutualInformation(torch::Tensor&, torch::Tensor&); - void completeFit(); - void checkFitData(int n_features, int n_samples, int n_samples_y, const vector& featureNames, const string& className); - void setStates(); + void completeFit(const map>&); + void checkFitData(int n_features, int n_samples, int n_samples_y, const vector& featureNames, const string& className, const map>&); + void setStates(const map>&); public: Network(); explicit Network(float, int); @@ -38,26 +33,26 @@ namespace bayesnet { void addNode(const string&); void addEdge(const string&, const string&); map>& getNodes(); - vector getFeatures(); - int getStates(); - vector> getEdges(); - int getClassNumStates(); - string getClassName(); - void fit(const vector>&, const vector&, const vector&, const string&); - void fit(torch::Tensor&, torch::Tensor&, const vector&, const string&); + vector getFeatures() const; + int getStates() const; + vector> getEdges() const; + int getNumEdges() const; + int getClassNumStates() const; + string getClassName() const; + void fit(const vector>&, const vector&, const vector&, const string&, const map>&); + void fit(const torch::Tensor&, const torch::Tensor&, const vector&, const string&, const map>&); + void fit(const torch::Tensor&, const vector&, const string&, const map>&); vector predict(const vector>&); // Return mx1 vector of predictions torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions - //Computes the conditional edge weight of variable index u and v conditioned on class_node - torch::Tensor conditionalEdgeWeight(); torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba); vector> predict_proba(const vector>&); // Return mxn vector of probabilities torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities double score(const vector>&, const vector&); vector topological_sort(); - vector show(); - vector graph(const string& title); // Returns a vector of strings representing the graph in graphviz format + vector show() const; + vector graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format void initialize(); - void dump_cpt(); + void dump_cpt() const; inline string version() { return "0.1.0"; } }; } diff --git a/src/BayesNet/Node.cc b/src/BayesNet/Node.cc index 3fca064..6669819 100644 --- a/src/BayesNet/Node.cc +++ b/src/BayesNet/Node.cc @@ -84,7 +84,7 @@ namespace bayesnet { } return result; } - void Node::computeCPT(map>& dataset, const int laplaceSmoothing) + void Node::computeCPT(const torch::Tensor& dataset, const vector& features, const int laplaceSmoothing) { dimensions.clear(); // Get dimensions of the CPT @@ -94,10 +94,22 @@ namespace bayesnet { // Create a tensor of zeros with the dimensions of the CPT cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing; // Fill table with counts - for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) { + auto pos = find(features.begin(), features.end(), name); + if (pos == features.end()) { + throw logic_error("Feature " + name + " not found in dataset"); + } + int name_index = pos - features.begin(); + for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) { torch::List> coordinates; - coordinates.push_back(torch::tensor(dataset[name][n_sample])); - transform(parents.begin(), parents.end(), back_inserter(coordinates), [&dataset, &n_sample](const auto& parent) { return torch::tensor(dataset[parent->getName()][n_sample]); }); + coordinates.push_back(dataset.index({ name_index, n_sample })); + for (auto parent : parents) { + pos = find(features.begin(), features.end(), parent->getName()); + if (pos == features.end()) { + throw logic_error("Feature parent " + parent->getName() + " not found in dataset"); + } + int parent_index = pos - features.begin(); + coordinates.push_back(dataset.index({ parent_index, n_sample })); + } // Increment the count of the corresponding coordinate cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1); } diff --git a/src/BayesNet/Node.h b/src/BayesNet/Node.h index b923dec..f4eb320 100644 --- a/src/BayesNet/Node.h +++ b/src/BayesNet/Node.h @@ -26,7 +26,7 @@ namespace bayesnet { vector& getParents(); vector& getChildren(); torch::Tensor& getCPT(); - void computeCPT(map>&, const int); + void computeCPT(const torch::Tensor&, const vector&, const int); int getNumStates() const; void setNumStates(int); unsigned minFill(); diff --git a/src/BayesNet/Proposal.cc b/src/BayesNet/Proposal.cc index c1d3626..d53094d 100644 --- a/src/BayesNet/Proposal.cc +++ b/src/BayesNet/Proposal.cc @@ -2,7 +2,7 @@ #include "ArffFiles.h" namespace bayesnet { - Proposal::Proposal(vector>& Xv_, vector& yv_, vector& features_, string& className_) : Xv(Xv_), yv(yv_), pFeatures(features_), pClassName(className_) {} + Proposal::Proposal(torch::Tensor& dataset_, vector& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {} Proposal::~Proposal() { for (auto& [key, value] : discretizers) { @@ -16,7 +16,6 @@ namespace bayesnet { auto order = model.topological_sort(); auto& nodes = model.getNodes(); vector indicesToReDiscretize; - auto n_samples = Xf.size(1); bool upgrade = false; // Flag to check if we need to upgrade the model for (auto feature : order) { auto nodeParents = nodes[feature]->getParents(); @@ -30,13 +29,13 @@ namespace bayesnet { parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end()); // Get the indices of the parents vector indices; + indices.push_back(-1); // Add class index transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); }); // Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y) - vector yJoinParents; - transform(yv.begin(), yv.end(), back_inserter(yJoinParents), [&](const auto& p) {return to_string(p); }); + vector yJoinParents(Xf.size(1)); for (auto idx : indices) { - for (int i = 0; i < n_samples; ++i) { - yJoinParents[i] += to_string(Xv[idx][i]); + for (int i = 0; i < Xf.size(1); ++i) { + yJoinParents[i] += to_string(pDataset.index({ idx, i }).item()); } } auto arff = ArffFiles(); @@ -59,26 +58,30 @@ namespace bayesnet { for (auto index : indicesToReDiscretize) { auto Xt_ptr = Xf.index({ index }).data_ptr(); auto Xt = vector(Xt_ptr, Xt_ptr + Xf.size(1)); - Xv[index] = discretizers[pFeatures[index]]->transform(Xt); + pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt))); auto xStates = vector(discretizers[pFeatures[index]]->getCutPoints().size() + 1); iota(xStates.begin(), xStates.end(), 0); //Update new states of the feature/node states[pFeatures[index]] = xStates; } + model.fit(pDataset, pFeatures, pClassName, states); } } - void Proposal::fit_local_discretization(map>& states, torch::Tensor& y) + map> Proposal::fit_local_discretization(torch::Tensor& y) { - // Sharing Xv and yv with Classifier - Xv = vector>(); - yv = vector(y.data_ptr(), y.data_ptr() + y.size(0)); + // Discretize the continuous input data and build pDataset (Classifier::dataset) + int m = Xf.size(1); + int n = Xf.size(0); + map> states; + pDataset = torch::zeros({ n + 1, m }, kInt32); + auto yv = vector(y.data_ptr(), y.data_ptr() + y.size(0)); // discretize input data by feature(row) - for (int i = 0; i < pFeatures.size(); ++i) { + for (auto i = 0; i < pFeatures.size(); ++i) { auto* discretizer = new mdlp::CPPFImdlp(); auto Xt_ptr = Xf.index({ i }).data_ptr(); auto Xt = vector(Xt_ptr, Xt_ptr + Xf.size(1)); discretizer->fit(Xt, yv); - Xv.push_back(discretizer->transform(Xt)); + pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt))); auto xStates = vector(discretizer->getCutPoints().size() + 1); iota(xStates.begin(), xStates.end(), 0); states[pFeatures[i]] = xStates; @@ -88,6 +91,8 @@ namespace bayesnet { auto yStates = vector(n_classes); iota(yStates.begin(), yStates.end(), 0); states[pClassName] = yStates; + pDataset.index_put_({ n, "..." }, y); + return states; } torch::Tensor Proposal::prepareX(torch::Tensor& X) { diff --git a/src/BayesNet/Proposal.h b/src/BayesNet/Proposal.h index a5650b4..10814c2 100644 --- a/src/BayesNet/Proposal.h +++ b/src/BayesNet/Proposal.h @@ -10,20 +10,20 @@ namespace bayesnet { class Proposal { public: - Proposal(vector>& Xv_, vector& yv_, vector& features_, string& className_); + Proposal(torch::Tensor& pDataset, vector& features_, string& className_); virtual ~Proposal(); protected: torch::Tensor prepareX(torch::Tensor& X); void localDiscretizationProposal(map>& states, Network& model); - void fit_local_discretization(map>& states, torch::Tensor& y); + map> fit_local_discretization(torch::Tensor& y); torch::Tensor Xf; // X continuous nxm tensor + torch::Tensor y; // y discrete nx1 tensor map discretizers; private: + torch::Tensor& pDataset; // (n+1)xm tensor vector& pFeatures; string& pClassName; - vector>& Xv; // X discrete nxm vector - vector& yv; }; } -#endif \ No newline at end of file +#endif \ No newline at end of file diff --git a/src/BayesNet/SPODE.cc b/src/BayesNet/SPODE.cc index a627cca..a90e5ef 100644 --- a/src/BayesNet/SPODE.cc +++ b/src/BayesNet/SPODE.cc @@ -4,7 +4,7 @@ namespace bayesnet { SPODE::SPODE(int root) : Classifier(Network()), root(root) {} - void SPODE::train() + void SPODE::buildModel() { // 0. Add all nodes to the model addNodes(); @@ -17,7 +17,7 @@ namespace bayesnet { } } } - vector SPODE::graph(const string& name) + vector SPODE::graph(const string& name) const { return model.graph(name); } diff --git a/src/BayesNet/SPODE.h b/src/BayesNet/SPODE.h index 4625714..f9b6af0 100644 --- a/src/BayesNet/SPODE.h +++ b/src/BayesNet/SPODE.h @@ -7,11 +7,11 @@ namespace bayesnet { private: int root; protected: - void train() override; + void buildModel() override; public: explicit SPODE(int root); virtual ~SPODE() {}; - vector graph(const string& name = "SPODE") override; + vector graph(const string& name = "SPODE") const override; }; } #endif \ No newline at end of file diff --git a/src/BayesNet/SPODELd.cc b/src/BayesNet/SPODELd.cc index f7df9b6..9683b7e 100644 --- a/src/BayesNet/SPODELd.cc +++ b/src/BayesNet/SPODELd.cc @@ -2,7 +2,7 @@ namespace bayesnet { using namespace std; - SPODELd::SPODELd(int root) : SPODE(root), Proposal(SPODE::Xv, SPODE::yv, features, className) {} + SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {} SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector& features_, string className_, map>& states_) { // This first part should go in a Classifier method called fit_local_discretization o fit_float... @@ -11,24 +11,36 @@ namespace bayesnet { Xf = X_; y = y_; // Fills vectors Xv & yv with the data from tensors X_ (discretized) & y - fit_local_discretization(states, y); - generateTensorXFromVector(); + states = fit_local_discretization(y); // We have discretized the input data // 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network - SPODE::fit(SPODE::Xv, SPODE::yv, features, className, states); + SPODE::fit(dataset, features, className, states); localDiscretizationProposal(states, model); - generateTensorXFromVector(); - Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1); - samples = torch::cat({ X, ytmp }, 0); - model.fit(SPODE::Xv, SPODE::yv, features, className); return *this; } + SPODELd& SPODELd::fit(torch::Tensor& dataset, vector& features_, string className_, map>& states_) + { + Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone(); + cout << "Xf " << Xf.sizes() << " dtype: " << Xf.dtype() << endl; + y = dataset.index({ -1, "..." }).clone(); + // This first part should go in a Classifier method called fit_local_discretization o fit_float... + features = features_; + className = className_; + // Fills vectors Xv & yv with the data from tensors X_ (discretized) & y + states = fit_local_discretization(y); + // We have discretized the input data + // 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network + SPODE::fit(dataset, features, className, states); + localDiscretizationProposal(states, model); + return *this; + } + Tensor SPODELd::predict(Tensor& X) { auto Xt = prepareX(X); return SPODE::predict(Xt); } - vector SPODELd::graph(const string& name) + vector SPODELd::graph(const string& name) const { return SPODE::graph(name); } diff --git a/src/BayesNet/SPODELd.h b/src/BayesNet/SPODELd.h index 789af7f..b94fc6c 100644 --- a/src/BayesNet/SPODELd.h +++ b/src/BayesNet/SPODELd.h @@ -6,12 +6,12 @@ namespace bayesnet { using namespace std; class SPODELd : public SPODE, public Proposal { - private: public: explicit SPODELd(int root); virtual ~SPODELd() = default; SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector& features, string className, map>& states) override; - vector graph(const string& name = "SPODE") override; + SPODELd& fit(torch::Tensor& dataset, vector& features, string className, map>& states) override; + vector graph(const string& name = "SPODE") const override; Tensor predict(Tensor& X) override; static inline string version() { return "0.0.1"; }; }; diff --git a/src/BayesNet/TAN.cc b/src/BayesNet/TAN.cc index f47d7c5..7b3e3a6 100644 --- a/src/BayesNet/TAN.cc +++ b/src/BayesNet/TAN.cc @@ -5,16 +5,16 @@ namespace bayesnet { TAN::TAN() : Classifier(Network()) {} - void TAN::train() + void TAN::buildModel() { // 0. Add all nodes to the model addNodes(); // 1. Compute mutual information between each feature and the class and set the root node // as the highest mutual information with the class auto mi = vector >(); - Tensor class_dataset = samples.index({ -1, "..." }); + Tensor class_dataset = dataset.index({ -1, "..." }); for (int i = 0; i < static_cast(features.size()); ++i) { - Tensor feature_dataset = samples.index({ i, "..." }); + Tensor feature_dataset = dataset.index({ i, "..." }); auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset); mi.push_back({ i, mi_value }); } @@ -34,7 +34,7 @@ namespace bayesnet { model.addEdge(className, feature); } } - vector TAN::graph(const string& title) + vector TAN::graph(const string& title) const { return model.graph(title); } diff --git a/src/BayesNet/TAN.h b/src/BayesNet/TAN.h index 5c7cf49..4c1c5f5 100644 --- a/src/BayesNet/TAN.h +++ b/src/BayesNet/TAN.h @@ -7,11 +7,11 @@ namespace bayesnet { class TAN : public Classifier { private: protected: - void train() override; + void buildModel() override; public: TAN(); virtual ~TAN() {}; - vector graph(const string& name = "TAN") override; + vector graph(const string& name = "TAN") const override; }; } #endif \ No newline at end of file diff --git a/src/BayesNet/TANLd.cc b/src/BayesNet/TANLd.cc index f0fe110..a30cba8 100644 --- a/src/BayesNet/TANLd.cc +++ b/src/BayesNet/TANLd.cc @@ -2,7 +2,7 @@ namespace bayesnet { using namespace std; - TANLd::TANLd() : TAN(), Proposal(TAN::Xv, TAN::yv, features, className) {} + TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {} TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector& features_, string className_, map>& states_) { // This first part should go in a Classifier method called fit_local_discretization o fit_float... @@ -11,24 +11,20 @@ namespace bayesnet { Xf = X_; y = y_; // Fills vectors Xv & yv with the data from tensors X_ (discretized) & y - fit_local_discretization(states, y); - generateTensorXFromVector(); + states = fit_local_discretization(y); // We have discretized the input data // 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network - TAN::fit(TAN::Xv, TAN::yv, features, className, states); + TAN::fit(dataset, features, className, states); localDiscretizationProposal(states, model); - generateTensorXFromVector(); - Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1); - samples = torch::cat({ X, ytmp }, 0); - model.fit(TAN::Xv, TAN::yv, features, className); return *this; + } Tensor TANLd::predict(Tensor& X) { auto Xt = prepareX(X); return TAN::predict(Xt); } - vector TANLd::graph(const string& name) + vector TANLd::graph(const string& name) const { return TAN::graph(name); } diff --git a/src/BayesNet/TANLd.h b/src/BayesNet/TANLd.h index d9172ac..c35e843 100644 --- a/src/BayesNet/TANLd.h +++ b/src/BayesNet/TANLd.h @@ -11,7 +11,7 @@ namespace bayesnet { TANLd(); virtual ~TANLd() = default; TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector& features, string className, map>& states) override; - vector graph(const string& name = "TAN") override; + vector graph(const string& name = "TAN") const override; Tensor predict(Tensor& X) override; static inline string version() { return "0.0.1"; }; }; diff --git a/src/Platform/Report.cc b/src/Platform/Report.cc index 90aad2b..3693248 100644 --- a/src/Platform/Report.cc +++ b/src/Platform/Report.cc @@ -4,6 +4,7 @@ namespace platform { string headerLine(const string& text) { int n = MAXL - text.length() - 3; + n = n < 0 ? 0 : n; return "* " + text + string(n, ' ') + "*\n"; } string Report::fromVector(const string& key) @@ -13,7 +14,7 @@ namespace platform { for (auto& item : data[key]) { result += to_string(item) + ", "; } - return "[" + result.substr(0, result.length() - 2) + "]"; + return "[" + result.substr(0, result.size() - 2) + "]"; } string fVector(const json& data) { @@ -21,7 +22,7 @@ namespace platform { for (const auto& item : data) { result += to_string(item) + ", "; } - return "[" + result.substr(0, result.length() - 2) + "]"; + return "[" + result.substr(0, result.size() - 2) + "]"; } void Report::show() {