Merge pull request 'alphablock' (#32) from alphablock into main
Reviewed-on: #32 Added - Add a new hyperparameter to the BoostAODE class, alphablock, to control the way α is computed, with the last model or with the ensmble built so far. Default value is false. - Add a new hyperparameter to the SPODE class, parent, to set the root node of the model. If no value is set the root parameter of the constructor is used. - Add a new hyperparameter to the TAN class, parent, to set the root node of the model. If not set the first feature is used as root.
This commit is contained in:
commit
64970cf7f7
@ -7,6 +7,12 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
|
||||
## [Unreleased]
|
||||
|
||||
### Added
|
||||
|
||||
- Add a new hyperparameter to the BoostAODE class, *alphablock*, to control the way α is computed, with the last model or with the ensmble built so far. Default value is *false*.
|
||||
- Add a new hyperparameter to the SPODE class, *parent*, to set the root node of the model. If no value is set the root parameter of the constructor is used.
|
||||
- Add a new hyperparameter to the TAN class, *parent*, to set the root node of the model. If not set the first feature is used as root.
|
||||
|
||||
## [1.0.6] 2024-11-23
|
||||
|
||||
### Fixed
|
||||
|
@ -18,7 +18,7 @@ The only external dependency is [libtorch](https://pytorch.org/cppdocs/installin
|
||||
|
||||
```bash
|
||||
wget https://download.pytorch.org/libtorch/nightly/cpu/libtorch-shared-with-deps-latest.zip
|
||||
unzip libtorch-shared-with-deps-latest.zips
|
||||
unzip libtorch-shared-with-deps-latest.zip
|
||||
```
|
||||
|
||||
## Setup
|
||||
|
@ -8,14 +8,29 @@
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
|
||||
SPODE::SPODE(int root) : Classifier(Network()), root(root)
|
||||
{
|
||||
validHyperparameters = { "parent" };
|
||||
}
|
||||
|
||||
void SPODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent")) {
|
||||
root = hyperparameters["parent"];
|
||||
hyperparameters.erase("parent");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void SPODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
addNodes();
|
||||
// 1. Add edges from the class node to all other nodes
|
||||
// 2. Add edges from the root node to all other nodes
|
||||
if (root >= static_cast<int>(features.size())) {
|
||||
throw std::invalid_argument("The parent node is not in the dataset");
|
||||
}
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
model.addEdge(className, features[i]);
|
||||
if (i != root) {
|
||||
|
@ -10,14 +10,15 @@
|
||||
|
||||
namespace bayesnet {
|
||||
class SPODE : public Classifier {
|
||||
private:
|
||||
int root;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit SPODE(int root);
|
||||
virtual ~SPODE() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
int root;
|
||||
};
|
||||
}
|
||||
#endif
|
@ -7,8 +7,20 @@
|
||||
#include "TAN.h"
|
||||
|
||||
namespace bayesnet {
|
||||
TAN::TAN() : Classifier(Network()) {}
|
||||
TAN::TAN() : Classifier(Network())
|
||||
{
|
||||
validHyperparameters = { "parent" };
|
||||
}
|
||||
|
||||
void TAN::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent")) {
|
||||
parent = hyperparameters["parent"];
|
||||
hyperparameters.erase("parent");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void TAN::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
@ -23,7 +35,10 @@ namespace bayesnet {
|
||||
mi.push_back({ i, mi_value });
|
||||
}
|
||||
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
||||
auto root = mi[mi.size() - 1].first;
|
||||
auto root = parent == -1 ? mi[mi.size() - 1].first : parent;
|
||||
if (root >= static_cast<int>(features.size())) {
|
||||
throw std::invalid_argument("The parent node is not in the dataset");
|
||||
}
|
||||
// 2. Compute mutual information between each feature and the class
|
||||
auto weights_matrix = metrics.conditionalEdge(weights);
|
||||
// 3. Compute the maximum spanning tree
|
||||
|
@ -9,13 +9,15 @@
|
||||
#include "Classifier.h"
|
||||
namespace bayesnet {
|
||||
class TAN : public Classifier {
|
||||
private:
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
TAN();
|
||||
virtual ~TAN() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
int parent = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
@ -12,7 +12,7 @@
|
||||
namespace bayesnet {
|
||||
Boost::Boost(bool predict_voting) : Ensemble(predict_voting)
|
||||
{
|
||||
validHyperparameters = { "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
|
||||
validHyperparameters = { "alpha_block", "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
|
||||
"predict_voting", "select_features", "block_update" };
|
||||
}
|
||||
void Boost::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
@ -26,6 +26,10 @@ namespace bayesnet {
|
||||
}
|
||||
hyperparameters.erase("order");
|
||||
}
|
||||
if (hyperparameters.contains("alpha_block")) {
|
||||
alpha_block = hyperparameters["alpha_block"];
|
||||
hyperparameters.erase("alpha_block");
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
@ -66,6 +70,12 @@ namespace bayesnet {
|
||||
block_update = hyperparameters["block_update"];
|
||||
hyperparameters.erase("block_update");
|
||||
}
|
||||
if (block_update && alpha_block) {
|
||||
throw std::invalid_argument("alpha_block and block_update cannot be true at the same time");
|
||||
}
|
||||
if (block_update && !bisection) {
|
||||
throw std::invalid_argument("block_update needs bisection to be true");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void Boost::buildModel(const torch::Tensor& weights)
|
||||
|
@ -45,8 +45,8 @@ namespace bayesnet {
|
||||
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
double threshold = -1;
|
||||
bool block_update = false;
|
||||
|
||||
bool block_update = false; // if true, use block update algorithm, only meaningful if bisection is true
|
||||
bool alpha_block = false; // if true, the alpha is computed with the ensemble built so far and the new model
|
||||
};
|
||||
}
|
||||
#endif
|
@ -92,7 +92,25 @@ namespace bayesnet {
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
auto ypred = model->predict(X_train);
|
||||
torch::Tensor ypred;
|
||||
if (alpha_block) {
|
||||
//
|
||||
// Compute the prediction with the current ensemble + model
|
||||
//
|
||||
// Add the model to the ensemble
|
||||
n_models++;
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1);
|
||||
// Compute the prediction
|
||||
ypred = predict(X_train);
|
||||
// Remove the model from the ensemble
|
||||
model = std::move(models.back());
|
||||
models.pop_back();
|
||||
significanceModels.pop_back();
|
||||
n_models--;
|
||||
} else {
|
||||
ypred = model->predict(X_train);
|
||||
}
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
}
|
||||
|
@ -1 +0,0 @@
|
||||
Subproject commit 029fe3b4609dd84cd939b73357f37bbb75bcf82f
|
@ -1 +1 @@
|
||||
Subproject commit 2ac43e32ac1eac0c986702ec526cf5367a565ef0
|
||||
Subproject commit 9652853d692ed3b8a38d89f70559209ffb988020
|
2
lib/json
2
lib/json
@ -1 +1 @@
|
||||
Subproject commit 378e091795a70fced276cd882bd8a6a428668fe5
|
||||
Subproject commit 620034ececc93991c5c1183b73c3768d81ca84b3
|
@ -268,3 +268,35 @@ TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
|
||||
REQUIRE_THROWS_WITH(clf.score(raw.Xv, raw.yv), message);
|
||||
REQUIRE_THROWS_WITH(clf.score(raw.Xt, raw.yt), message);
|
||||
}
|
||||
TEST_CASE("TAN & SPODE with hyperparameters", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.setHyperparameters({
|
||||
{"parent", 1},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score == Catch::Approx(0.973333).epsilon(raw.epsilon));
|
||||
auto clf2 = bayesnet::SPODE(0);
|
||||
clf2.setHyperparameters({
|
||||
{"parent", 1},
|
||||
});
|
||||
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score2 = clf2.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score2 == Catch::Approx(0.973333).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("TAN & SPODE with invalid hyperparameters", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.setHyperparameters({
|
||||
{"parent", 5},
|
||||
});
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
auto clf2 = bayesnet::SPODE(0);
|
||||
clf2.setHyperparameters({
|
||||
{"parent", 5},
|
||||
});
|
||||
REQUIRE_THROWS_AS(clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
}
|
@ -136,8 +136,16 @@ TEST_CASE("Oddities", "[BoostAODE]")
|
||||
clf.setHyperparameters(hyper.value());
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
}
|
||||
}
|
||||
|
||||
auto bad_hyper_fit2 = nlohmann::json{
|
||||
{ { "alpha_block", true }, { "block_update", true } },
|
||||
{ { "bisection", false }, { "block_update", true } },
|
||||
};
|
||||
for (const auto& hyper : bad_hyper_fit2.items()) {
|
||||
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||
}
|
||||
}
|
||||
TEST_CASE("Bisection Best", "[BoostAODE]")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
@ -180,7 +188,6 @@ TEST_CASE("Bisection Best vs Last", "[BoostAODE]")
|
||||
auto score_last = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
|
||||
}
|
||||
|
||||
TEST_CASE("Block Update", "[BoostAODE]")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
@ -211,3 +218,18 @@ TEST_CASE("Block Update", "[BoostAODE]")
|
||||
// }
|
||||
// std::cout << "Score " << score << std::endl;
|
||||
}
|
||||
TEST_CASE("Alphablock", "[BoostAODE]")
|
||||
{
|
||||
auto clf_alpha = bayesnet::BoostAODE();
|
||||
auto clf_no_alpha = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
clf_alpha.setHyperparameters({
|
||||
{"alpha_block", true},
|
||||
});
|
||||
clf_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
clf_no_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_alpha = clf_alpha.score(raw.X_test, raw.y_test);
|
||||
auto score_no_alpha = clf_no_alpha.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score_alpha == Catch::Approx(0.720779f).epsilon(raw.epsilon));
|
||||
REQUIRE(score_no_alpha == Catch::Approx(0.733766f).epsilon(raw.epsilon));
|
||||
}
|
@ -17,7 +17,7 @@
|
||||
|
||||
std::map<std::string, std::string> modules = {
|
||||
{ "mdlp", "2.0.1" },
|
||||
{ "Folding", "1.1.0" },
|
||||
{ "Folding", "1.1.1" },
|
||||
{ "json", "3.11" },
|
||||
{ "ArffFiles", "1.1.0" }
|
||||
};
|
||||
|
@ -1 +1 @@
|
||||
Subproject commit 506276c59217429c93abd2fe9507c7f45eb81072
|
||||
Subproject commit 0321d2fce328b5e2ad106a8230ff20e0d5bf5501
|
Loading…
Reference in New Issue
Block a user