Begin experiment

This commit is contained in:
Ricardo Montañana Gómez 2023-07-23 01:47:57 +02:00
parent 9981ad1811
commit 644b6c9be0
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
11 changed files with 107 additions and 118 deletions

View File

@ -1,6 +1,5 @@
#include <iostream>
#include <string>
#include <torch/torch.h>
#include <thread>
#include <map>
#include <argparse/argparse.hpp>
@ -19,20 +18,6 @@ using namespace std;
const string PATH = "../../data/";
inline constexpr auto hash_conv(const std::string_view sv)
{
unsigned long hash{ 5381 };
for (unsigned char c : sv) {
hash = ((hash << 5) + hash) ^ c;
}
return hash;
}
inline constexpr auto operator"" _sh(const char* str, size_t len)
{
return hash_conv(std::string_view{ str, len });
}
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{
vector<mdlp::labels_t>Xd;
@ -98,15 +83,13 @@ int main(int argc, char** argv)
throw runtime_error("Model must be one of {AODE, KDB, SPODE, TAN}");
}
);
program.add_argument("--discretize").default_value(false).implicit_value(true);
bool class_last, discretize_dataset;
bool class_last;
string model_name, file_name, path, complete_file_name;
try {
program.parse_args(argc, argv);
file_name = program.get<string>("file");
path = program.get<string>("path");
model_name = program.get<string>("model");
discretize_dataset = program.get<bool>("discretize");
complete_file_name = path + file_name + ".arff";
class_last = datasets[file_name];
if (!file_exists(complete_file_name)) {
@ -134,21 +117,21 @@ int main(int argc, char** argv)
features.push_back(feature.first);
}
// Discretize Dataset
vector<mdlp::labels_t> Xd;
map<string, int> maxes;
tie(Xd, maxes) = discretize(X, y, features);
auto [Xd, maxes] = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(
maxes[className]);
double score;
auto classifiers = map<string, bayesnet::BaseClassifier*>({ { "AODE", new bayesnet::AODE() }, { "KDB", new bayesnet::KDB(2) }, { "SPODE", new bayesnet::SPODE(2) }, { "TAN", new bayesnet::TAN() } });
states[className] = vector<int>(maxes[className]);
auto classifiers = map<string, bayesnet::BaseClassifier*>({
{ "AODE", new bayesnet::AODE() }, { "KDB", new bayesnet::KDB(2) },
{ "SPODE", new bayesnet::SPODE(2) }, { "TAN", new bayesnet::TAN() }
}
);
bayesnet::BaseClassifier* clf = classifiers[model_name];
clf->fit(Xd, y, features, className, states);
score = clf->score(Xd, y);
auto score = clf->score(Xd, y);
auto lines = clf->show();
auto graph = clf->graph();
for (auto line : lines) {

View File

@ -1,6 +1,5 @@
#include "BayesMetrics.h"
#include "Mst.h"
using namespace std;
namespace bayesnet {
Metrics::Metrics(torch::Tensor& samples, vector<string>& features, string& className, int classNumStates)
: samples(samples)

View File

@ -2,7 +2,6 @@
#include "bayesnetUtils.h"
namespace bayesnet {
using namespace std;
using namespace torch;
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}

View File

@ -1,7 +1,6 @@
#include "Ensemble.h"
namespace bayesnet {
using namespace std;
using namespace torch;
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()), fitted(false) {}

View File

@ -1,7 +1,6 @@
#include "KDB.h"
namespace bayesnet {
using namespace std;
using namespace torch;
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}

View File

@ -1,7 +1,6 @@
#include "TAN.h"
namespace bayesnet {
using namespace std;
using namespace torch;
TAN::TAN() : Classifier(Network()) {}

View File

@ -12,22 +12,25 @@
#include "AODE.h"
#include "TAN.h"
#include "platformUtils.h"
#include "Folding.h"
using namespace std;
inline constexpr auto hash_conv(const std::string_view sv)
pair<float, float> cross_validation(Fold* fold, bayesnet::BaseClassifier* model, Tensor& X, Tensor& y, int k)
{
unsigned long hash{ 5381 };
for (unsigned char c : sv) {
hash = ((hash << 5) + hash) ^ c;
float accuracy = 0.0;
for (int i = 0; i < k; i++) {
auto [train, test] = fold->getFold(i);
auto X_train = X.indices{ train };
auto y_train = y.indices{ train };
auto X_test = X.indices{ test };
auto y_test = y.indices{ test };
model->fit(X_train, y_train);
auto acc = model->score(X_test, y_test);
accuracy += acc;
}
return hash;
}
inline constexpr auto operator"" _sh(const char* str, size_t len)
{
return hash_conv(std::string_view{ str, len });
return { accuracy / k, 0 };
}
int main(int argc, char** argv)
@ -94,70 +97,18 @@ int main(int argc, char** argv)
/*
* Begin Processing
*/
auto handler = ArffFiles();
handler.load(complete_file_name, class_last);
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
for (auto feature : handler.getAttributes()) {
features.push_back(feature.first);
auto [X, y, features] = loadDataset(file_name, discretize_dataset);
if (discretize_dataset) {
auto [discretized, maxes] = discretize(X, y, features);
}
// Discretize Dataset
vector<mdlp::labels_t> Xd;
map<string, int> maxes;
tie(Xd, maxes) = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(
maxes[className]);
double score;
vector<string> lines;
vector<string> graph;
auto kdb = bayesnet::KDB(2);
auto aode = bayesnet::AODE();
auto spode = bayesnet::SPODE(2);
auto tan = bayesnet::TAN();
switch (hash_conv(model_name)) {
case "AODE"_sh:
aode.fit(Xd, y, features, className, states);
lines = aode.show();
score = aode.score(Xd, y);
graph = aode.graph();
break;
case "KDB"_sh:
kdb.fit(Xd, y, features, className, states);
lines = kdb.show();
score = kdb.score(Xd, y);
graph = kdb.graph();
break;
case "SPODE"_sh:
spode.fit(Xd, y, features, className, states);
lines = spode.show();
score = spode.score(Xd, y);
graph = spode.graph();
break;
case "TAN"_sh:
tan.fit(Xd, y, features, className, states);
lines = tan.show();
score = tan.score(Xd, y);
graph = tan.graph();
break;
}
for (auto line : lines) {
cout << line << endl;
}
cout << "Score: " << score << endl;
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
auto fold = StratifiedKFold(5, y, -1);
auto classifiers = map<string, bayesnet::BaseClassifier*>({
{ "AODE", new bayesnet::AODE() }, { "KDB", new bayesnet::KDB(2) },
{ "SPODE", new bayesnet::SPODE(2) }, { "TAN", new bayesnet::TAN() }
}
);
bayesnet::BaseClassifier* model = classifiers[model_name];
auto results = cross_validation(model, X, y, fold, 5);
cout << "Accuracy: " << results.first << endl;
return 0;
}

View File

@ -2,10 +2,7 @@
#include <algorithm>
#include <map>
#include <random>
using namespace std;
KFold::KFold(int k, int n, int seed) : k(k), n(n), seed(seed)
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed)
{
indices = vector<int>(n);
iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
@ -31,8 +28,8 @@ pair<vector<int>, vector<int>> KFold::getFold(int nFold)
}
return { train, test };
}
StratifiedKFold::StratifiedKFold(int k, const vector<int>& y, int seed) :
k(k), seed(seed)
StratifiedKFold::StratifiedKFold(int k, const vector<int>& y, int seed)
: Fold(k, y.size(), seed)
{
n = y.size();
stratified_indices = vector<vector<int>>(k);

View File

@ -2,21 +2,25 @@
#define FOLDING_H
#include <vector>
using namespace std;
class KFold {
private:
class Fold {
protected:
int k;
int n;
int seed;
public:
Fold(int k, int n, int seed = -1) : k(k), n(n), seed(seed) {}
virtual pair<vector<int>, vector<int>> getFold(int nFold) = 0;
virtual ~Fold() = default;
};
class KFold : public Fold {
private:
vector<int> indices;
public:
KFold(int k, int n, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold);
};
class StratifiedKFold {
private:
int k;
int n;
int seed;
class StratifiedKFold : public Fold {
vector<vector<int>> stratified_indices;
public:
StratifiedKFold(int k, const vector<int>& y, int seed = -1);

View File

@ -1,5 +1,7 @@
#include "platformUtils.h"
using namespace torch;
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{
vector<mdlp::labels_t> Xd;
@ -14,6 +16,18 @@ pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t
return { Xd, maxes };
}
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
vector<mdlp::labels_t> Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
Xd.push_back(xd);
}
return Xd;
}
bool file_exists(const std::string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
@ -24,6 +38,48 @@ bool file_exists(const std::string& name)
}
}
tuple < Tensor, Tensor, vector<string>> loadDataset(string name, bool discretize)
{
auto handler = ArffFiles();
handler.load(PATH + static_cast<string>(name) + ".arff");
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
for (auto feature : handler.getAttributes()) {
features.push_back(feature.first);
}
Tensor Xd;
if (discretize) {
auto Xr = discretizeDataset(X, y);
Xd = torch::zeros({ static_cast<int64_t>(Xr[0].size()), static_cast<int64_t>(Xr.size()) }, torch::kInt64);
for (int i = 0; i < features.size(); ++i) {
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt64));
}
} else {
Xd = torch::zeros({ static_cast<int64_t>(X[0].size()), static_cast<int64_t>(X.size()) }, torch::kFloat64);
for (int i = 0; i < features.size(); ++i) {
Xd.index_put_({ "...", i }, torch::tensor(X[i], torch::kFloat64));
}
}
return { Xd, torch::tensor(y, torch::kInt64), features };
}
pair <map<string, int>, map<string, vector<int>>> discretize_info(Tensor& X, Tensor& y, vector<string> features, string className)
{
map<string, int> maxes;
map<string, vector<int>> states;
for (int i = 0; i < X.size(1); i++) {
maxes[features[i]] = X.select(1, i).max().item<int>() + 1;
states[features[i]] = vector<int>(maxes[features[i]]);
}
maxes[className] = y.max().item<int>() + 1;
states[className] = vector<int>(maxes[className]);
return { maxes, states };
}
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(string name)
{
auto handler = ArffFiles();

View File

@ -1,5 +1,6 @@
#ifndef PLATFORM_UTILS_H
#define PLATFORM_UTILS_H
#include <torch/torch.h>
#include <string>
#include <vector>
#include <map>
@ -12,4 +13,6 @@ const string PATH = "../../data/";
bool file_exists(const std::string& name);
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features);
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(string name);
tuple<torch::Tensor, torch::Tensor, vector<string>> loadDataset(string name, bool discretize);
pair <map<string, int>, map<string, vector<int>>> discretize_info(torch::Tensor& X, torch::Tensor& y);
#endif //PLATFORM_UTILS_H