diff --git a/bayesnet/ensembles/BoostAODE.h b/bayesnet/ensembles/BoostAODE.h index 2c0ed14..6e7b546 100644 --- a/bayesnet/ensembles/BoostAODE.h +++ b/bayesnet/ensembles/BoostAODE.h @@ -7,7 +7,7 @@ namespace bayesnet { class BoostAODE : public Ensemble { public: - BoostAODE(bool predict_voting = true); + BoostAODE(bool predict_voting = false); virtual ~BoostAODE() = default; std::vector graph(const std::string& title = "BoostAODE") const override; void setHyperparameters(const nlohmann::json& hyperparameters) override; diff --git a/docs/BoostAODE.md b/docs/BoostAODE.md index a04cc0e..1279407 100644 --- a/docs/BoostAODE.md +++ b/docs/BoostAODE.md @@ -24,7 +24,7 @@ The hyperparameters defined in the algorithm are: Default value is *-1* so every time any of those algorithms are called, the threshold has to be set to the desired value. -- ***predict_voting*** (*boolean*): Sets whether the algorithm will use *model voting* to predict the result. If set to false, the weighted average of the probabilities of each model's prediction will be used. Default value: *true*. +- ***predict_voting*** (*boolean*): Sets whether the algorithm will use *model voting* to predict the result. If set to false, the weighted average of the probabilities of each model's prediction will be used. Default value: *false*. - ***predict_single*** (*boolean*): Sets whether the algorithm will use single-model prediction in the learning process. If set to *false*, all models trained up to that point will be used to calculate the prediction necessary to update the weights in the learning process. Default value: *true*.