Update log output size type
This commit is contained in:
parent
45c048f635
commit
58d5a35a35
@ -215,7 +215,7 @@ namespace bayesnet {
|
|||||||
while (!finished) {
|
while (!finished) {
|
||||||
// Step 1: Build ranking with mutual information
|
// Step 1: Build ranking with mutual information
|
||||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||||
VLOG_SCOPE_F(1, "featureSelection.size: %d featuresUsed.size: %d", featureSelection.size(), featuresUsed.size());
|
VLOG_SCOPE_F(1, "featureSelection.size: %zu featuresUsed.size: %zu", featureSelection.size(), featuresUsed.size());
|
||||||
if (order_algorithm == Orders.RAND) {
|
if (order_algorithm == Orders.RAND) {
|
||||||
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
||||||
}
|
}
|
||||||
@ -226,7 +226,7 @@ namespace bayesnet {
|
|||||||
);
|
);
|
||||||
int k = pow(2, tolerance);
|
int k = pow(2, tolerance);
|
||||||
int counter = 0; // The model counter of the current pack
|
int counter = 0; // The model counter of the current pack
|
||||||
VLOG_SCOPE_F(1, "k=%d featureSelection.size: %d", k, featureSelection.size());
|
VLOG_SCOPE_F(1, "k=%d featureSelection.size: %zu", k, featureSelection.size());
|
||||||
while (counter++ < k && featureSelection.size() > 0) {
|
while (counter++ < k && featureSelection.size() > 0) {
|
||||||
VLOG_SCOPE_F(2, "counter: %d numItemsPack: %d", counter, numItemsPack);
|
VLOG_SCOPE_F(2, "counter: %d numItemsPack: %d", counter, numItemsPack);
|
||||||
auto feature = featureSelection[0];
|
auto feature = featureSelection[0];
|
||||||
@ -248,7 +248,7 @@ namespace bayesnet {
|
|||||||
models.push_back(std::move(model));
|
models.push_back(std::move(model));
|
||||||
significanceModels.push_back(alpha_t);
|
significanceModels.push_back(alpha_t);
|
||||||
n_models++;
|
n_models++;
|
||||||
VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %d", numItemsPack, n_models, featuresUsed.size());
|
VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||||
}
|
}
|
||||||
if (convergence && !finished) {
|
if (convergence && !finished) {
|
||||||
auto y_val_predict = predict(X_test);
|
auto y_val_predict = predict(X_test);
|
||||||
@ -271,7 +271,7 @@ namespace bayesnet {
|
|||||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||||
// priorAccuracy = accuracy;
|
// priorAccuracy = accuracy;
|
||||||
}
|
}
|
||||||
VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %d features.size: %d", tolerance, featuresUsed.size(), features.size());
|
VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||||
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||||||
}
|
}
|
||||||
if (tolerance > maxTolerance) {
|
if (tolerance > maxTolerance) {
|
||||||
|
Loading…
Reference in New Issue
Block a user