Add constant references to Statistics

This commit is contained in:
Ricardo Montañana Gómez 2023-10-04 13:40:45 +02:00
parent c4ae3fe429
commit 55e742438f
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
5 changed files with 27 additions and 11 deletions

View File

@ -282,12 +282,15 @@ namespace platform {
// Print the table of results
printTableResults(models, table);
// Compute the Friedman test
map<string, map<string, float>> ranksModels;
if (friedman) {
Statistics stats(models, datasets, table, significance);
auto result = stats.friedmanTest();
stats.postHocHolmTest(result);
ranksModels = stats.getRanks();
}
if (excel) {
// BestResultsExcel excel(score, models, datasets, ranksModels, table, friedman, significance);
BestResultsExcel excel(score, models, datasets, table, friedman, significance);
excel.build();
cout << Colors::YELLOW() << "** Excel file generated: " << excel.getFileName() << Colors::RESET() << endl;

View File

@ -4,7 +4,8 @@
#include "Statistics.h"
namespace platform {
BestResultsExcel::BestResultsExcel(string score, vector<string> models, vector<string> datasets, json table, bool friedman, double significance) : score(score), models(models), datasets(datasets), table(table), friedman(friedman), significance(significance)
BestResultsExcel::BestResultsExcel(const string& score, const vector<string>& models, const vector<string>& datasets, const json& table, bool friedman, double significance) :
score(score), models(models), datasets(datasets), table(table), friedman(friedman), significance(significance)
{
workbook = workbook_new((Paths::excel() + fileName).c_str());
worksheet = workbook_add_worksheet(workbook, "Best Results");

View File

@ -2,6 +2,7 @@
#define BESTRESULTS_EXCEL_H
#include "ExcelFile.h"
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
using namespace std;
@ -11,7 +12,7 @@ namespace platform {
class BestResultsExcel : ExcelFile {
public:
BestResultsExcel(string score, vector<string> models, vector<string> datasets, json table, bool friedman, double significance);
BestResultsExcel(const string& score, const vector<string>& models, const vector<string>& datasets, const json& table, bool friedman, double significance);
~BestResultsExcel();
void build();
string getFileName();
@ -21,14 +22,15 @@ namespace platform {
void footer();
void formatColumns();
const string fileName = "BestResults.xlsx";
string score;
vector<string> models;
vector<string> datasets;
json table;
const string& score;
const vector<string>& models;
const vector<string>& datasets;
const json& table;
bool friedman;
double significance;
int modelNameSize = 12; // Min size of the column
int datasetNameSize = 25; // Min size of the column
// map<string, map<string, float>>& ranksModels;
};
}
#endif //BESTRESULTS_EXCEL_H

View File

@ -7,7 +7,7 @@
namespace platform {
Statistics::Statistics(vector<string>& models, vector<string>& datasets, json data, double significance, bool output) :
Statistics::Statistics(const vector<string>& models, const vector<string>& datasets, const json& data, double significance, bool output) :
models(models), datasets(datasets), data(data), significance(significance), output(output)
{
nModels = models.size();
@ -21,6 +21,7 @@ namespace platform {
cerr << "nDatasets: " << nDatasets << endl;
throw runtime_error("Can't make the Friedman test with less than 3 models and/or less than 3 datasets.");
}
ranksModels.clear();
computeRanks();
// Set the control model as the one with the lowest average rank
controlIdx = distance(ranks.begin(), min_element(ranks.begin(), ranks.end(), [](const auto& l, const auto& r) { return l.second < r.second; }));
@ -68,6 +69,8 @@ namespace platform {
}
// Assign the ranks
ranksLine = assignRanks(ranksOrder);
// Store the ranks of the dataset
ranksModels[dataset] = ranksLine;
if (ranks.size() == 0) {
ranks = ranksLine;
} else {
@ -239,4 +242,8 @@ namespace platform {
{
return holmResult;
}
map<string, map<string, float>>& Statistics::getRanks()
{
return ranksModels;
}
} // namespace platform

View File

@ -2,6 +2,7 @@
#define STATISTICS_H
#include <iostream>
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
using namespace std;
@ -32,18 +33,19 @@ namespace platform {
};
class Statistics {
public:
Statistics(vector<string>& models, vector<string>& datasets, json data, double significance = 0.05, bool output = true);
Statistics(const vector<string>& models, const vector<string>& datasets, const json& data, double significance = 0.05, bool output = true);
bool friedmanTest();
void postHocHolmTest(bool friedmanResult);
FriedmanResult& getFriedmanResult();
HolmResult& getHolmResult();
map<string, map<string, float>>& getRanks();
private:
void fit();
void computeRanks();
void computeWTL();
vector<string> models;
vector<string> datasets;
json data;
const vector<string>& models;
const vector<string>& datasets;
const json& data;
double significance;
bool output;
bool fitted = false;
@ -56,6 +58,7 @@ namespace platform {
int maxDatasetName = 0;
FriedmanResult friedmanResult;
HolmResult holmResult;
map<string, map<string, float>> ranksModels;
};
}
#endif // !STATISTICS_H