Merge branch 'aftermath' into main

This commit is contained in:
Ricardo Montañana Gómez 2023-07-30 01:05:31 +02:00
commit 53697648e7
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
31 changed files with 416 additions and 249 deletions

View File

@ -3,5 +3,5 @@ include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc)
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@ -4,16 +4,12 @@
#include <thread>
#include <map>
#include <argparse/argparse.hpp>
#include "BaseClassifier.h"
#include "ArffFiles.h"
#include "Network.h"
#include "BayesMetrics.h"
#include "CPPFImdlp.h"
#include "KDB.h"
#include "SPODE.h"
#include "AODE.h"
#include "TAN.h"
#include "Folding.h"
#include "Models.h"
#include "modelRegister.h"
using namespace std;
@ -73,9 +69,8 @@ int main(int argc, char** argv)
{"mfeat-factors", true},
};
auto valid_datasets = vector<string>();
for (auto dataset : datasets) {
valid_datasets.push_back(dataset.first);
}
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
[](const pair<string, bool>& pair) { return pair.first; });
argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-d", "--dataset")
.help("Dataset file name")
@ -91,13 +86,13 @@ int main(int argc, char** argv)
.default_value(string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use {AODE, KDB, SPODE, TAN}")
.help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) {
static const vector<string> choices = { "AODE", "KDB", "SPODE", "TAN" };
static const vector<string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of {AODE, KDB, SPODE, TAN}");
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
}
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
@ -153,9 +148,9 @@ int main(int argc, char** argv)
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
for (auto feature : handler.getAttributes()) {
features.push_back(feature.first);
}
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features),
[](const pair<string, string>& item) { return item.first; });
// Discretize Dataset
auto [Xd, maxes] = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
@ -164,12 +159,7 @@ int main(int argc, char** argv)
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(maxes[className]);
auto classifiers = map<string, bayesnet::BaseClassifier*>({
{ "AODE", new bayesnet::AODE() }, { "KDB", new bayesnet::KDB(2) },
{ "SPODE", new bayesnet::SPODE(2) }, { "TAN", new bayesnet::TAN() }
}
);
bayesnet::BaseClassifier* clf = classifiers[model_name];
auto clf = platform::Models::instance()->create(model_name);
clf->fit(Xd, y, features, className, states);
auto score = clf->score(Xd, y);
auto lines = clf->show();

View File

@ -8,6 +8,7 @@ namespace bayesnet {
void train() override;
public:
AODE();
virtual ~AODE() {};
vector<string> graph(string title = "AODE") override;
};
}

View File

@ -12,8 +12,8 @@ namespace bayesnet {
: features(features)
, className(className)
, classNumStates(classNumStates)
, samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32))
{
samples = torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32);
for (int i = 0; i < vsamples.size(); ++i) {
samples.index_put_({ "...", i }, torch::tensor(vsamples[i], torch::kInt32));
}
@ -123,7 +123,6 @@ namespace bayesnet {
*/
vector<pair<int, int>> Metrics::maximumSpanningTree(vector<string> features, Tensor& weights, int root)
{
auto result = vector<pair<int, int>>();
auto mst = MST(features, weights, root);
return mst.maximumSpanningTree();
}

View File

@ -11,7 +11,7 @@ namespace bayesnet {
Tensor samples;
vector<string> features;
string className;
int classNumStates;
int classNumStates = 0;
public:
Metrics() = default;
Metrics(Tensor&, vector<string>&, string&, int);

View File

@ -125,7 +125,6 @@ namespace bayesnet {
}
void Classifier::addNodes()
{
auto test = model.getEdges();
// Add all nodes to the network
for (auto feature : features) {
model.addNode(feature, states[feature].size());

View File

@ -148,10 +148,10 @@ namespace bayesnet {
}
int Ensemble::getNumberOfStates()
{
int states = 0;
int nstates = 0;
for (auto i = 0; i < n_models; ++i) {
states += models[i]->getNumberOfStates();
nstates += models[i]->getNumberOfStates();
}
return states;
return nstates;
}
}

View File

@ -13,7 +13,8 @@ namespace bayesnet {
protected:
void train() override;
public:
KDB(int k, float theta = 0.03);
explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {};
vector<string> graph(string name = "KDB") override;
};
}

View File

@ -7,9 +7,8 @@
namespace bayesnet {
using namespace std;
Graph::Graph(int V)
Graph::Graph(int V) : V(V), parent(vector<int>(V))
{
parent = vector<int>(V);
for (int i = 0; i < V; i++)
parent[i] = i;
G.clear();
@ -34,10 +33,10 @@ namespace bayesnet {
}
void Graph::kruskal_algorithm()
{
int i, uSt, vEd;
// sort the edges ordered on decreasing weight
sort(G.begin(), G.end(), [](auto& left, auto& right) {return left.first > right.first;});
for (i = 0; i < G.size(); i++) {
sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
for (int i = 0; i < G.size(); i++) {
int uSt, vEd;
uSt = find_set(G[i].second.first);
vEd = find_set(G[i].second.second);
if (uSt != vEd) {

View File

@ -10,7 +10,7 @@ namespace bayesnet {
private:
Tensor weights;
vector<string> features;
int root;
int root = 0;
public:
MST() = default;
MST(vector<string>& features, Tensor& weights, int root);
@ -23,7 +23,7 @@ namespace bayesnet {
vector <pair<float, pair<int, int>>> T; // vector for mst
vector<int> parent;
public:
Graph(int V);
explicit Graph(int V);
void addEdge(int u, int v, float wt);
int find_set(int i);
void union_set(int u, int v);

View File

@ -8,7 +8,7 @@ namespace bayesnet {
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.getmaxThreads()), fitted(other.fitted)
{
for (auto& pair : other.nodes) {
for (const auto& pair : other.nodes) {
nodes[pair.first] = std::make_unique<Node>(*pair.second);
}
}
@ -20,7 +20,7 @@ namespace bayesnet {
{
return samples;
}
void Network::addNode(string name, int numStates)
void Network::addNode(const string& name, int numStates)
{
if (find(features.begin(), features.end(), name) == features.end()) {
features.push_back(name);
@ -69,7 +69,7 @@ namespace bayesnet {
recStack.erase(nodeId); // remove node from recursion stack before function ends
return false;
}
void Network::addEdge(const string parent, const string child)
void Network::addEdge(const string& parent, const string& child)
{
if (nodes.find(parent) == nodes.end()) {
throw invalid_argument("Parent node " + parent + " does not exist");
@ -105,8 +105,8 @@ namespace bayesnet {
for (int i = 0; i < featureNames.size(); ++i) {
auto column = torch::flatten(X.index({ "...", i }));
auto k = vector<int>();
for (auto i = 0; i < X.size(0); ++i) {
k.push_back(column[i].item<int>());
for (auto z = 0; z < X.size(0); ++z) {
k.push_back(column[z].item<int>());
}
dataset[featureNames[i]] = k;
}
@ -145,9 +145,6 @@ namespace bayesnet {
while (nextNodeIndex < nodes.size()) {
unique_lock<mutex> lock(mtx);
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
if (nextNodeIndex >= nodes.size()) {
break; // No more work remaining
}
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() {
while (true) {
unique_lock<mutex> lock(mtx);
@ -262,9 +259,7 @@ namespace bayesnet {
// Normalize result
double sum = accumulate(result.begin(), result.end(), 0.0);
for (double& value : result) {
value /= sum;
}
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
return result;
}
vector<string> Network::show()
@ -280,7 +275,7 @@ namespace bayesnet {
}
return result;
}
vector<string> Network::graph(string title)
vector<string> Network::graph(const string& title)
{
auto output = vector<string>();
auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";

View File

@ -27,13 +27,13 @@ namespace bayesnet {
void completeFit();
public:
Network();
Network(float, int);
Network(float);
Network(Network&);
explicit Network(float, int);
explicit Network(float);
explicit Network(Network&);
torch::Tensor& getSamples();
float getmaxThreads();
void addNode(string, int);
void addEdge(const string, const string);
void addNode(const string&, int);
void addEdge(const string&, const string&);
map<string, std::unique_ptr<Node>>& getNodes();
vector<string> getFeatures();
int getStates();
@ -48,7 +48,7 @@ namespace bayesnet {
vector<vector<double>> predict_proba(const vector<vector<int>>&);
double score(const vector<vector<int>>&, const vector<int>&);
vector<string> show();
vector<string> graph(string title); // Returns a vector of strings representing the graph in graphviz format
vector<string> graph(const string& title); // Returns a vector of strings representing the graph in graphviz format
inline string version() { return "0.1.0"; }
};
}

View File

@ -88,18 +88,15 @@ namespace bayesnet {
{
// Get dimensions of the CPT
dimensions.push_back(numStates);
for (auto father : getParents()) {
dimensions.push_back(father->getNumStates());
}
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
// Create a tensor of zeros with the dimensions of the CPT
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample]));
for (auto father : getParents()) {
coordinates.push_back(torch::tensor(dataset[father->getName()][n_sample]));
}
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&dataset, &n_sample](const auto& parent) { return torch::tensor(dataset[parent->getName()][n_sample]); });
// Increment the count of the corresponding coordinate
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
}
@ -111,19 +108,15 @@ namespace bayesnet {
torch::List<c10::optional<torch::Tensor>> coordinates;
// following predetermined order of indices in the cpTable (see Node.h)
coordinates.push_back(torch::tensor(evidence[name]));
for (auto parent : getParents()) {
coordinates.push_back(torch::tensor(evidence[parent->getName()]));
}
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return torch::tensor(evidence[parent->getName()]); });
return cpTable.index({ coordinates }).item<float>();
}
vector<string> Node::graph(string className)
vector<string> Node::graph(const string& className)
{
auto output = vector<string>();
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
output.push_back(name + " [shape=circle" + suffix + "] \n");
for (auto& child : children) {
output.push_back(name + " -> " + child->getName());
}
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });
return output;
}
}

View File

@ -16,7 +16,7 @@ namespace bayesnet {
vector<int64_t> dimensions; // dimensions of the cpTable
public:
vector<pair<string, string>> combinations(const vector<string>&);
Node(const std::string&, int);
Node(const string&, int);
void clear();
void addParent(Node*);
void addChild(Node*);
@ -30,7 +30,7 @@ namespace bayesnet {
int getNumStates() const;
void setNumStates(int);
unsigned minFill();
vector<string> graph(string clasName); // Returns a vector of strings representing the graph in graphviz format
vector<string> graph(const string& clasName); // Returns a vector of strings representing the graph in graphviz format
float getFactorValue(map<string, int>&);
};
}

View File

@ -1,6 +1,7 @@
#ifndef SPODE_H
#define SPODE_H
#include "Classifier.h"
namespace bayesnet {
class SPODE : public Classifier {
private:
@ -8,7 +9,8 @@ namespace bayesnet {
protected:
void train() override;
public:
SPODE(int root);
explicit SPODE(int root);
virtual ~SPODE() {};
vector<string> graph(string name = "SPODE") override;
};
}

View File

@ -18,7 +18,7 @@ namespace bayesnet {
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
mi.push_back({ i, mi_value });
}
sort(mi.begin(), mi.end(), [](auto& left, auto& right) {return left.second < right.second;});
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
auto root = mi[mi.size() - 1].first;
// 2. Compute mutual information between each feature and the class
auto weights = metrics.conditionalEdge();

View File

@ -10,6 +10,7 @@ namespace bayesnet {
void train() override;
public:
TAN();
virtual ~TAN() {};
vector<string> graph(string name = "TAN") override;
};
}

View File

@ -4,5 +4,5 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@ -2,21 +2,11 @@
#include "platformUtils.h"
#include "ArffFiles.h"
namespace platform {
vector<string> split(string text, char delimiter)
{
vector<string> result;
stringstream ss(text);
string token;
while (getline(ss, token, delimiter)) {
result.push_back(token);
}
return result;
}
void Datasets::load()
{
string line;
ifstream catalog(path + "/all.txt");
if (catalog.is_open()) {
string line;
while (getline(catalog, line)) {
vector<string> tokens = split(line, ',');
string name = tokens[0];
@ -31,9 +21,7 @@ namespace platform {
vector<string> Datasets::getNames()
{
vector<string> result;
for (auto& d : datasets) {
result.push_back(d.first);
}
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
return result;
}
vector<string> Datasets::getFeatures(string name)
@ -89,27 +77,12 @@ namespace platform {
}
return datasets[name]->getTensors();
}
bool Datasets::isDataset(string name)
bool Datasets::isDataset(const string& name)
{
return datasets.find(name) != datasets.end();
}
Dataset::Dataset(Dataset& dataset)
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{
path = dataset.path;
name = dataset.name;
className = dataset.className;
n_samples = dataset.n_samples;
n_features = dataset.n_features;
features = dataset.features;
states = dataset.states;
loaded = dataset.loaded;
discretize = dataset.discretize;
X = dataset.X;
y = dataset.y;
Xv = dataset.Xv;
Xd = dataset.Xd;
yv = dataset.yv;
fileType = dataset.fileType;
}
string Dataset::getName()
{
@ -178,9 +151,9 @@ namespace platform {
}
void Dataset::load_csv()
{
string line;
ifstream file(path + "/" + name + ".csv");
if (file.is_open()) {
string line;
getline(file, line);
vector<string> tokens = split(line, ',');
features = vector<string>(tokens.begin(), tokens.end() - 1);
@ -218,9 +191,8 @@ namespace platform {
yv = arff.getY();
// Get className & Features
className = arff.getClassName();
for (auto feature : arff.getAttributes()) {
features.push_back(feature.first);
}
auto attributes = arff.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
}
void Dataset::load()
{

View File

@ -13,7 +13,7 @@ namespace platform {
string name;
fileType_t fileType;
string className;
int n_samples, n_features;
int n_samples{ 0 }, n_features{ 0 };
vector<string> features;
map<string, vector<int>> states;
bool loaded;
@ -27,8 +27,8 @@ namespace platform {
void load_arff();
void computeStates();
public:
Dataset(string path, string name, string className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
Dataset(Dataset&);
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
explicit Dataset(const Dataset&);
string getName();
string getClassName();
vector<string> getFeatures();
@ -49,7 +49,7 @@ namespace platform {
bool discretize;
void load(); // Loads the list of datasets
public:
Datasets(string path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
vector<string> getNames();
vector<string> getFeatures(string name);
int getNSamples(string name);
@ -58,7 +58,7 @@ namespace platform {
pair<vector<vector<float>>&, vector<int>&> getVectors(string name);
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(string name);
pair<torch::Tensor&, torch::Tensor&> getTensors(string name);
bool isDataset(string name);
bool isDataset(const string& name);
};
};

62
src/Platform/DotEnv.h Normal file
View File

@ -0,0 +1,62 @@
#ifndef DOTENV_H
#define DOTENV_H
#include <string>
#include <map>
#include <fstream>
#include <sstream>
#include "platformUtils.h"
namespace platform {
class DotEnv {
private:
std::map<std::string, std::string> env;
std::string trim(const std::string& str)
{
std::string result = str;
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](int ch) {
return !std::isspace(ch);
}));
result.erase(std::find_if(result.rbegin(), result.rend(), [](int ch) {
return !std::isspace(ch);
}).base(), result.end());
return result;
}
public:
DotEnv()
{
std::ifstream file(".env");
if (!file.is_open()) {
std::cerr << "File .env not found" << std::endl;
exit(1);
}
std::string line;
while (std::getline(file, line)) {
line = trim(line);
if (line.empty() || line[0] == '#') {
continue;
}
std::istringstream iss(line);
std::string key, value;
if (std::getline(iss, key, '=') && std::getline(iss, value)) {
env[key] = value;
}
}
}
std::string get(const std::string& key)
{
return env[key];
}
std::vector<int> getSeeds()
{
auto seeds = std::vector<int>();
auto seeds_str = env["seeds"];
seeds_str = trim(seeds_str);
seeds_str = seeds_str.substr(1, seeds_str.size() - 2);
auto seeds_str_split = split(seeds_str, ',');
transform(seeds_str_split.begin(), seeds_str_split.end(), back_inserter(seeds), [](const std::string& str) {
return stoi(str);
});
return seeds;
}
};
}
#endif

View File

@ -1,4 +1,6 @@
#include "Experiment.h"
#include "Datasets.h"
#include "Models.h"
namespace platform {
using json = nlohmann::json;
@ -43,10 +45,10 @@ namespace platform {
result["discretized"] = discretized;
result["stratified"] = stratified;
result["folds"] = nfolds;
result["seeds"] = random_seeds;
result["seeds"] = randomSeeds;
result["duration"] = duration;
result["results"] = json::array();
for (auto& r : results) {
for (const auto& r : results) {
json j;
j["dataset"] = r.getDataset();
j["hyperparameters"] = r.getHyperparameters();
@ -65,6 +67,10 @@ namespace platform {
j["test_time_std"] = r.getTestTimeStd();
j["time"] = r.getTestTime() + r.getTrainTime();
j["time_std"] = r.getTestTimeStd() + r.getTrainTimeStd();
j["scores_train"] = r.getScoresTrain();
j["scores_test"] = r.getScoresTest();
j["times_train"] = r.getTimesTrain();
j["times_test"] = r.getTimesTest();
j["nodes"] = r.getNodes();
j["leaves"] = r.getLeaves();
j["depth"] = r.getDepth();
@ -72,62 +78,99 @@ namespace platform {
}
return result;
}
void Experiment::save(string path)
void Experiment::save(const string& path)
{
json data = build_json();
ofstream file(path + "/" + get_file_name());
file << data;
file.close();
}
Result cross_validation(Fold* fold, string model_name, torch::Tensor& Xt, torch::Tensor& y, vector<string> features, string className, map<string, vector<int>> states)
void Experiment::show()
{
auto classifiers = map<string, bayesnet::BaseClassifier*>({
{ "AODE", new bayesnet::AODE() }, { "KDB", new bayesnet::KDB(2) },
{ "SPODE", new bayesnet::SPODE(2) }, { "TAN", new bayesnet::TAN() }
}
);
auto result = Result();
auto [values, counts] = at::_unique(y);
result.setSamples(Xt.size(1)).setFeatures(Xt.size(0)).setClasses(values.size(0));
auto k = fold->getNumberOfFolds();
auto accuracy_test = torch::zeros({ k }, torch::kFloat64);
auto accuracy_train = torch::zeros({ k }, torch::kFloat64);
auto train_time = torch::zeros({ k }, torch::kFloat64);
auto test_time = torch::zeros({ k }, torch::kFloat64);
auto nodes = torch::zeros({ k }, torch::kFloat64);
auto edges = torch::zeros({ k }, torch::kFloat64);
auto num_states = torch::zeros({ k }, torch::kFloat64);
Timer train_timer, test_timer;
cout << "doing Fold: " << flush;
for (int i = 0; i < k; i++) {
bayesnet::BaseClassifier* model = classifiers[model_name];
result.setModelVersion(model->getVersion());
train_timer.start();
auto [train, test] = fold->getFold(i);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = Xt.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = Xt.index({ "...", test_t });
auto y_test = y.index({ test_t });
cout << i + 1 << ", " << flush;
model->fit(X_train, y_train, features, className, states);
nodes[i] = model->getNumberOfNodes();
edges[i] = model->getNumberOfEdges();
num_states[i] = model->getNumberOfStates();
train_time[i] = train_timer.getDuration();
auto accuracy_train_value = model->score(X_train, y_train);
test_timer.start();
auto accuracy_test_value = model->score(X_test, y_test);
test_time[i] = test_timer.getDuration();
accuracy_train[i] = accuracy_train_value;
accuracy_test[i] = accuracy_test_value;
json data = build_json();
cout << data.dump(4) << endl;
}
void Experiment::go(vector<string> filesToProcess, const string& path)
{
cout << "*** Starting experiment: " << title << " ***" << endl;
for (auto fileName : filesToProcess) {
cout << "- " << setw(20) << left << fileName << " " << right << flush;
cross_validation(path, fileName);
cout << endl;
}
}
void Experiment::cross_validation(const string& path, const string& fileName)
{
auto datasets = platform::Datasets(path, true, platform::ARFF);
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto samples = datasets.getNSamples(fileName);
auto className = datasets.getClassName(fileName);
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
// Prepare Result
auto result = Result();
auto [values, counts] = at::_unique(y);;
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
int nResults = nfolds * static_cast<int>(randomSeeds.size());
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
auto train_time = torch::zeros({ nResults }, torch::kFloat64);
auto test_time = torch::zeros({ nResults }, torch::kFloat64);
auto nodes = torch::zeros({ nResults }, torch::kFloat64);
auto edges = torch::zeros({ nResults }, torch::kFloat64);
auto num_states = torch::zeros({ nResults }, torch::kFloat64);
Timer train_timer, test_timer;
int item = 0;
for (auto seed : randomSeeds) {
cout << "(" << seed << ") doing Fold: " << flush;
Fold* fold;
if (stratified)
fold = new StratifiedKFold(nfolds, y, seed);
else
fold = new KFold(nfolds, y.size(0), seed);
for (int nfold = 0; nfold < nfolds; nfold++) {
auto clf = Models::instance()->create(model);
setModelVersion(clf->getVersion());
train_timer.start();
auto [train, test] = fold->getFold(nfold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
cout << nfold + 1 << ", " << flush;
clf->fit(X_train, y_train, features, className, states);
nodes[item] = clf->getNumberOfNodes();
edges[item] = clf->getNumberOfEdges();
num_states[item] = clf->getNumberOfStates();
train_time[item] = train_timer.getDuration();
auto accuracy_train_value = clf->score(X_train, y_train);
test_timer.start();
auto accuracy_test_value = clf->score(X_test, y_test);
test_time[item] = test_timer.getDuration();
accuracy_train[item] = accuracy_train_value;
accuracy_test[item] = accuracy_test_value;
// Store results and times in vector
result.addScoreTrain(accuracy_train_value);
result.addScoreTest(accuracy_test_value);
result.addTimeTrain(train_time[item].item<double>());
result.addTimeTest(test_time[item].item<double>());
item++;
}
cout << "end. " << flush;
delete fold;
}
cout << "end." << endl;
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
return result;
result.setDataset(fileName);
addResult(result);
}
}

View File

@ -30,13 +30,14 @@ namespace platform {
class Result {
private:
string dataset, hyperparameters, model_version;
int samples, features, classes;
double score_train, score_test, score_train_std, score_test_std, train_time, train_time_std, test_time, test_time_std;
float nodes, leaves, depth;
int samples{ 0 }, features{ 0 }, classes{ 0 };
double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 };
float nodes{ 0 }, leaves{ 0 }, depth{ 0 };
vector<double> scores_train, scores_test, times_train, times_test;
public:
Result() = default;
Result& setDataset(string dataset) { this->dataset = dataset; return *this; }
Result& setHyperparameters(string hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
Result& setDataset(const string& dataset) { this->dataset = dataset; return *this; }
Result& setHyperparameters(const string& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
Result& setSamples(int samples) { this->samples = samples; return *this; }
Result& setFeatures(int features) { this->features = features; return *this; }
Result& setClasses(int classes) { this->classes = classes; return *this; }
@ -51,7 +52,10 @@ namespace platform {
Result& setNodes(float nodes) { this->nodes = nodes; return *this; }
Result& setLeaves(float leaves) { this->leaves = leaves; return *this; }
Result& setDepth(float depth) { this->depth = depth; return *this; }
Result& setModelVersion(string model_version) { this->model_version = model_version; return *this; }
Result& addScoreTrain(double score) { scores_train.push_back(score); return *this; }
Result& addScoreTest(double score) { scores_test.push_back(score); return *this; }
Result& addTimeTrain(double time) { times_train.push_back(time); return *this; }
Result& addTimeTest(double time) { times_test.push_back(time); return *this; }
const float get_score_train() const { return score_train; }
float get_score_test() { return score_test; }
const string& getDataset() const { return dataset; }
@ -70,36 +74,40 @@ namespace platform {
const float getNodes() const { return nodes; }
const float getLeaves() const { return leaves; }
const float getDepth() const { return depth; }
const string& getModelVersion() const { return model_version; }
const vector<double>& getScoresTrain() const { return scores_train; }
const vector<double>& getScoresTest() const { return scores_test; }
const vector<double>& getTimesTrain() const { return times_train; }
const vector<double>& getTimesTest() const { return times_test; }
};
class Experiment {
private:
string title, model, platform, score_name, model_version, language_version, language;
bool discretized, stratified;
bool discretized{ false }, stratified{ false };
vector<Result> results;
vector<int> random_seeds;
int nfolds;
float duration;
vector<int> randomSeeds;
int nfolds{ 0 };
float duration{ 0 };
json build_json();
public:
Experiment() = default;
Experiment& setTitle(string title) { this->title = title; return *this; }
Experiment& setModel(string model) { this->model = model; return *this; }
Experiment& setPlatform(string platform) { this->platform = platform; return *this; }
Experiment& setScoreName(string score_name) { this->score_name = score_name; return *this; }
Experiment& setModelVersion(string model_version) { this->model_version = model_version; return *this; }
Experiment& setLanguage(string language) { this->language = language; return *this; }
Experiment& setLanguageVersion(string language_version) { this->language_version = language_version; return *this; }
Experiment& setTitle(const string& title) { this->title = title; return *this; }
Experiment& setModel(const string& model) { this->model = model; return *this; }
Experiment& setPlatform(const string& platform) { this->platform = platform; return *this; }
Experiment& setScoreName(const string& score_name) { this->score_name = score_name; return *this; }
Experiment& setModelVersion(const string& model_version) { this->model_version = model_version; return *this; }
Experiment& setLanguage(const string& language) { this->language = language; return *this; }
Experiment& setLanguageVersion(const string& language_version) { this->language_version = language_version; return *this; }
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; return *this; }
Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; }
Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; }
Experiment& addResult(Result result) { results.push_back(result); return *this; }
Experiment& addRandomSeed(int random_seed) { random_seeds.push_back(random_seed); return *this; }
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
string get_file_name();
void save(string path);
void show() { cout << "Showing experiment..." << "Score Test: " << results[0].get_score_test() << " Score Train: " << results[0].get_score_train() << endl; }
void save(const string& path);
void cross_validation(const string& path, const string& fileName);
void go(vector<string> filesToProcess, const string& path);
void show();
};
Result cross_validation(Fold* fold, string model_name, torch::Tensor& X, torch::Tensor& y, vector<string> features, string className, map<string, vector<int>> states);
}
#endif

View File

@ -7,9 +7,8 @@ Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
random_seed = default_random_engine(seed == -1 ? rd() : seed);
srand(seed == -1 ? time(0) : seed);
}
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed)
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed), indices(vector<int>(n))
{
indices = vector<int>(n);
iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
shuffle(indices.begin(), indices.end(), random_seed);
}

View File

@ -22,7 +22,7 @@ private:
vector<int> indices;
public:
KFold(int k, int n, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold);
pair<vector<int>, vector<int>> getFold(int nFold) override;
};
class StratifiedKFold : public Fold {
private:
@ -32,6 +32,6 @@ private:
public:
StratifiedKFold(int k, const vector<int>& y, int seed = -1);
StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold);
pair<vector<int>, vector<int>> getFold(int nFold) override;
};
#endif

54
src/Platform/Models.cc Normal file
View File

@ -0,0 +1,54 @@
#include "Models.h"
namespace platform {
using namespace std;
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
Models* Models::factory = nullptr;;
Models* Models::instance()
{
//manages singleton
if (factory == nullptr)
factory = new Models();
return factory;
}
void Models::registerFactoryFunction(const string& name,
function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
{
// register the class factory function
functionRegistry[name] = classFactoryFunction;
}
shared_ptr<bayesnet::BaseClassifier> Models::create(const string& name)
{
bayesnet::BaseClassifier* instance = nullptr;
// find name in the registry and call factory method.
auto it = functionRegistry.find(name);
if (it != functionRegistry.end())
instance = it->second();
// wrap instance in a shared ptr and return
if (instance != nullptr)
return shared_ptr<bayesnet::BaseClassifier>(instance);
else
return nullptr;
}
vector<string> Models::getNames()
{
vector<string> names;
transform(functionRegistry.begin(), functionRegistry.end(), back_inserter(names),
[](const pair<string, function<bayesnet::BaseClassifier* (void)>>& pair) { return pair.first; });
return names;
}
string Models::toString()
{
string result = "";
for (const auto& pair : functionRegistry) {
result += pair.first + ", ";
}
return "{" + result.substr(0, result.size() - 2) + "}";
}
Registrar::Registrar(const string& name, function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
{
// register the class factory function
Models::instance()->registerFactoryFunction(name, classFactoryFunction);
}
}

32
src/Platform/Models.h Normal file
View File

@ -0,0 +1,32 @@
#ifndef MODELS_H
#define MODELS_H
#include <map>
#include "BaseClassifier.h"
#include "AODE.h"
#include "TAN.h"
#include "KDB.h"
#include "SPODE.h"
namespace platform {
class Models {
private:
map<string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
static Models* factory; //singleton
Models() {};
public:
Models(Models&) = delete;
void operator=(const Models&) = delete;
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
static Models* instance();
shared_ptr<bayesnet::BaseClassifier> create(const string& name);
void registerFactoryFunction(const string& name,
function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
vector<string> getNames();
string toString();
};
class Registrar {
public:
Registrar(const string& className, function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
};
}
#endif

View File

@ -3,33 +3,37 @@
#include "platformUtils.h"
#include "Experiment.h"
#include "Datasets.h"
#include "DotEnv.h"
#include "Models.h"
#include "modelRegister.h"
using namespace std;
const string PATH_RESULTS = "results";
const string PATH_DATASETS = "datasets";
argparse::ArgumentParser manageArguments(int argc, char** argv)
{
auto env = platform::DotEnv();
argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
program.add_argument("-p", "--path")
.help("folder where the data files are located, default")
.default_value(string{ PATH }
.default_value(string{ PATH_DATASETS }
);
program.add_argument("-m", "--model")
.help("Model to use {AODE, KDB, SPODE, TAN}")
.help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) {
static const vector<string> choices = { "AODE", "KDB", "SPODE", "TAN" };
static const vector<string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of {AODE, KDB, SPODE, TAN}");
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
}
);
program.add_argument("--title").required().help("Experiment title");
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
program.add_argument("--title").default_value("").help("Experiment title");
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const string& value) {
try {
auto k = stoi(value);
if (k < 2) {
@ -43,22 +47,22 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
catch (...) {
throw runtime_error("Number of folds must be an integer");
}});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, discretize_dataset, stratified;
int n_folds, seed;
string model_name, file_name, path, complete_file_name, title;
auto seed_values = env.getSeeds();
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
try {
program.parse_args(argc, argv);
file_name = program.get<string>("dataset");
path = program.get<string>("path");
model_name = program.get<string>("model");
discretize_dataset = program.get<bool>("discretize");
stratified = program.get<bool>("stratified");
n_folds = program.get<int>("folds");
seed = program.get<int>("seed");
complete_file_name = path + file_name + ".arff";
class_last = false;//datasets[file_name];
title = program.get<string>("title");
auto file_name = program.get<string>("dataset");
auto path = program.get<string>("path");
auto model_name = program.get<string>("model");
auto discretize_dataset = program.get<bool>("discretize");
auto stratified = program.get<bool>("stratified");
auto n_folds = program.get<int>("folds");
auto seeds = program.get<vector<int>>("seeds");
auto complete_file_name = path + file_name + ".arff";
auto title = program.get<string>("title");
if (title == "" && file_name == "") {
throw runtime_error("title is mandatory if dataset is not provided");
}
}
catch (const exception& err) {
cerr << err.what() << endl;
@ -71,25 +75,30 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
int main(int argc, char** argv)
{
auto program = manageArguments(argc, argv);
bool saveResults = false;
auto file_name = program.get<string>("dataset");
auto path = program.get<string>("path");
auto model_name = program.get<string>("model");
auto discretize_dataset = program.get<bool>("discretize");
auto stratified = program.get<bool>("stratified");
auto n_folds = program.get<int>("folds");
auto seed = program.get<int>("seed");
vector<string> filesToProcess;
auto seeds = program.get<vector<int>>("seeds");
vector<string> filesToTest;
auto datasets = platform::Datasets(path, true, platform::ARFF);
auto title = program.get<string>("title");
if (file_name != "") {
if (!datasets.isDataset(file_name)) {
cerr << "Dataset " << file_name << " not found" << endl;
exit(1);
}
filesToProcess.push_back(file_name);
if (title == "") {
title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds";
}
filesToTest.push_back(file_name);
} else {
filesToProcess = platform::Datasets(path, true, platform::ARFF).getNames();
filesToTest = platform::Datasets(path, true, platform::ARFF).getNames();
saveResults = true;
}
auto title = program.get<string>("title");
/*
* Begin Processing
@ -97,31 +106,18 @@ int main(int argc, char** argv)
auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform("BayesNet");
experiment.setStratified(stratified).setNFolds(n_folds).addRandomSeed(seed).setScoreName("accuracy");
platform::Timer timer;
cout << "*** Starting experiment: " << title << " ***" << endl;
timer.start();
for (auto fileName : filesToProcess) {
cout << "- " << setw(20) << left << fileName << " " << right << flush;
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto samples = datasets.getNSamples(fileName);
auto className = datasets.getClassName(fileName);
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
Fold* fold;
if (stratified)
fold = new StratifiedKFold(n_folds, y, seed);
else
fold = new KFold(n_folds, samples, seed);
auto result = platform::cross_validation(fold, model_name, X, y, features, className, states);
result.setDataset(fileName);
experiment.setModelVersion(result.getModelVersion());
experiment.addResult(result);
delete fold;
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
for (auto seed : seeds) {
experiment.addRandomSeed(seed);
}
platform::Timer timer;
timer.start();
experiment.go(filesToTest, path);
experiment.setDuration(timer.getDuration());
experiment.save(PATH_RESULTS);
if (saveResults)
experiment.save(PATH_RESULTS);
else
experiment.show();
cout << "Done!" << endl;
return 0;
}

View File

@ -0,0 +1,11 @@
#ifndef MODEL_REGISTER_H
#define MODEL_REGISTER_H
static platform::Registrar registrarT("TAN",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
static platform::Registrar registrarS("SPODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
static platform::Registrar registrarK("KDB",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
static platform::Registrar registrarA("AODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
#endif

View File

@ -2,6 +2,17 @@
using namespace torch;
vector<string> split(const string& text, char delimiter)
{
vector<string> result;
stringstream ss(text);
string token;
while (getline(ss, token, delimiter)) {
result.push_back(token);
}
return result;
}
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{
vector<mdlp::labels_t> Xd;
@ -28,7 +39,7 @@ vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::label
return Xd;
}
bool file_exists(const std::string& name)
bool file_exists(const string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file);
@ -38,7 +49,7 @@ bool file_exists(const std::string& name)
}
}
tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(string path, string name, bool class_last, bool discretize_dataset)
tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset)
{
auto handler = ArffFiles();
handler.load(path + static_cast<string>(name) + ".arff", class_last);
@ -48,9 +59,8 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
for (auto feature : handler.getAttributes()) {
features.push_back(feature.first);
}
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
Tensor Xd;
auto states = map<string, vector<int>>();
if (discretize_dataset) {
@ -72,7 +82,7 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
}
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(string name)
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name)
{
auto handler = ArffFiles();
handler.load(PATH + static_cast<string>(name) + ".arff");
@ -82,9 +92,8 @@ tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vect
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
for (auto feature : handler.getAttributes()) {
features.push_back(feature.first);
}
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
// Discretize Dataset
vector<mdlp::labels_t> Xd;
map<string, int> maxes;

View File

@ -11,10 +11,11 @@ using namespace std;
const string PATH = "../../data/";
bool file_exists(const std::string& name);
vector<string> split(const string& text, char delimiter);
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features);
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
pair<torch::Tensor, map<string, vector<int>>> discretizeTorch(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className);
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(string name);
tuple<torch::Tensor, torch::Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(string path, string name, bool class_last, bool discretize_dataset);
pair<torch::Tensor, map<string, vector<int>>> discretizeTorch(torch::Tensor& X, torch::Tensor& y, vector<string>& features, const string& className);
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name);
tuple<torch::Tensor, torch::Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset);
map<string, vector<int>> get_states(vector<string>& features, string className, map<string, int>& maxes);
#endif //PLATFORM_UTILS_H