diff --git a/.vscode/launch.json b/.vscode/launch.json index e70b71d..89beff3 100644 --- a/.vscode/launch.json +++ b/.vscode/launch.json @@ -21,7 +21,7 @@ { "type": "lldb", "request": "launch", - "name": "experiment", + "name": "experimentPy", "program": "${workspaceFolder}/build_debug/src/Platform/b_main", "args": [ "-m", @@ -35,6 +35,23 @@ ], "cwd": "/home/rmontanana/Code/discretizbench", }, + { + "type": "lldb", + "request": "launch", + "name": "experimentBayes", + "program": "${workspaceFolder}/build_debug/src/Platform/b_main", + "args": [ + "-m", + "TAN", + "--stratified", + "--discretize", + "-d", + "iris", + "--hyperparameters", + "{\"repeatSparent\": true, \"maxModels\": 12}" + ], + "cwd": "/home/rmontanana/Code/discretizbench", + }, { "type": "lldb", "request": "launch", diff --git a/grid_stree.json b/grid_stree.json new file mode 100644 index 0000000..9e6a712 --- /dev/null +++ b/grid_stree.json @@ -0,0 +1,162 @@ +{ + "balance-scale": { + "C": 10000.0, + "gamma": 0.1, + "kernel": "rbf", + "max_iter": 10000 + }, + "balloons": { + "C": 7, + "gamma": 0.1, + "kernel": "rbf", + "max_iter": 10000 + }, + "breast-cancer-wisc-diag": { + "C": 0.2, + "max_iter": 10000 + }, + "breast-cancer-wisc-prog": { + "C": 0.2, + "max_iter": 10000 + }, + "breast-cancer-wisc": {}, + "breast-cancer": {}, + "cardiotocography-10clases": {}, + "cardiotocography-3clases": {}, + "conn-bench-sonar-mines-rocks": {}, + "cylinder-bands": {}, + "dermatology": { + "C": 55, + "max_iter": 10000 + }, + "echocardiogram": { + "C": 7, + "gamma": 0.1, + "kernel": "poly", + "max_features": "auto", + "max_iter": 10000 + }, + "fertility": { + "C": 0.05, + "max_features": "auto", + "max_iter": 10000 + }, + "haberman-survival": {}, + "heart-hungarian": { + "C": 0.05, + "max_iter": 10000 + }, + "hepatitis": { + "C": 7, + "gamma": 0.1, + "kernel": "rbf", + "max_iter": 10000 + }, + "ilpd-indian-liver": {}, + "ionosphere": { + "C": 7, + "gamma": 0.1, + "kernel": "rbf", + "max_iter": 10000 + }, + "iris": {}, + "led-display": {}, + "libras": { + "C": 0.08, + "max_iter": 10000 + }, + "low-res-spect": { + "C": 0.05, + "max_iter": 10000 + }, + "lymphography": { + "C": 0.05, + "max_iter": 10000 + }, + "mammographic": {}, + "molec-biol-promoter": { + "C": 0.05, + "gamma": 0.1, + "kernel": "poly", + "max_iter": 10000 + }, + "musk-1": { + "C": 0.05, + "gamma": 0.1, + "kernel": "poly", + "max_iter": 10000 + }, + "oocytes_merluccius_nucleus_4d": { + "C": 8.25, + "gamma": 0.1, + "kernel": "poly" + }, + "oocytes_merluccius_states_2f": {}, + "oocytes_trisopterus_nucleus_2f": {}, + "oocytes_trisopterus_states_5b": { + "C": 0.11, + "max_iter": 10000 + }, + "parkinsons": {}, + "pima": {}, + "pittsburg-bridges-MATERIAL": { + "C": 7, + "gamma": 0.1, + "kernel": "rbf", + "max_iter": 10000 + }, + "pittsburg-bridges-REL-L": {}, + "pittsburg-bridges-SPAN": { + "C": 0.05, + "max_iter": 10000 + }, + "pittsburg-bridges-T-OR-D": {}, + "planning": { + "C": 7, + "gamma": 10.0, + "kernel": "rbf", + "max_iter": 10000 + }, + "post-operative": { + "C": 55, + "degree": 5, + "gamma": 0.1, + "kernel": "poly", + "max_iter": 10000 + }, + "seeds": { + "C": 10000.0, + "max_iter": 10000 + }, + "statlog-australian-credit": { + "C": 0.05, + "max_features": "auto", + "max_iter": 10000 + }, + "statlog-german-credit": {}, + "statlog-heart": {}, + "statlog-image": { + "C": 7, + "max_iter": 10000 + }, + "statlog-vehicle": {}, + "synthetic-control": { + "C": 0.55, + "max_iter": 10000 + }, + "tic-tac-toe": { + "C": 0.2, + "gamma": 0.1, + "kernel": "poly", + "max_iter": 10000 + }, + "vertebral-column-2clases": {}, + "wine": { + "C": 0.55, + "max_iter": 10000 + }, + "zoo": { + "C": 0.1, + "max_iter": 10000 + } +} \ No newline at end of file diff --git a/src/BayesNet/BaseClassifier.h b/src/BayesNet/BaseClassifier.h index ffbe5f2..f46054d 100644 --- a/src/BayesNet/BaseClassifier.h +++ b/src/BayesNet/BaseClassifier.h @@ -6,8 +6,6 @@ namespace bayesnet { enum status_t { NORMAL, WARNING, ERROR }; class BaseClassifier { - protected: - virtual void trainModel(const torch::Tensor& weights) = 0; public: // X is nxm std::vector, y is nx1 std::vector virtual BaseClassifier& fit(std::vector>& X, std::vector& y, const std::vector& features, const std::string& className, std::map>& states) = 0; @@ -30,6 +28,10 @@ namespace bayesnet { std::vector virtual topological_order() = 0; void virtual dump_cpt()const = 0; virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0; + std::vector& getValidHyperparameters() { return validHyperparameters; } + protected: + virtual void trainModel(const torch::Tensor& weights) = 0; + std::vector validHyperparameters; }; } #endif \ No newline at end of file diff --git a/src/BayesNet/BoostAODE.cc b/src/BayesNet/BoostAODE.cc index 059fec4..de6ebb8 100644 --- a/src/BayesNet/BoostAODE.cc +++ b/src/BayesNet/BoostAODE.cc @@ -10,7 +10,11 @@ #include "IWSS.h" namespace bayesnet { - BoostAODE::BoostAODE() : Ensemble() {} + BoostAODE::BoostAODE() : Ensemble() + { + validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features" }; + + } void BoostAODE::buildModel(const torch::Tensor& weights) { // Models shall be built in trainModel @@ -45,9 +49,6 @@ namespace bayesnet { } void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters) { - // Check if hyperparameters are valid - const std::vector validKeys = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features" }; - checkHyperparameters(validKeys, hyperparameters); if (hyperparameters.contains("repeatSparent")) { repeatSparent = hyperparameters["repeatSparent"]; } diff --git a/src/BayesNet/Classifier.cc b/src/BayesNet/Classifier.cc index 5d46cb0..c8ee3ef 100644 --- a/src/BayesNet/Classifier.cc +++ b/src/BayesNet/Classifier.cc @@ -153,18 +153,8 @@ namespace bayesnet { { model.dump_cpt(); } - void Classifier::checkHyperparameters(const std::vector& validKeys, const nlohmann::json& hyperparameters) - { - for (const auto& item : hyperparameters.items()) { - if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) { - throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid"); - } - } - } void Classifier::setHyperparameters(const nlohmann::json& hyperparameters) { - // Check if hyperparameters are valid, default is no hyperparameters - const std::vector validKeys = { }; - checkHyperparameters(validKeys, hyperparameters); + //For classifiers that don't have hyperparameters } } \ No newline at end of file diff --git a/src/BayesNet/Classifier.h b/src/BayesNet/Classifier.h index f187a0e..4bd2c57 100644 --- a/src/BayesNet/Classifier.h +++ b/src/BayesNet/Classifier.h @@ -22,7 +22,6 @@ namespace bayesnet { void checkFitParameters(); virtual void buildModel(const torch::Tensor& weights) = 0; void trainModel(const torch::Tensor& weights) override; - void checkHyperparameters(const std::vector& validKeys, const nlohmann::json& hyperparameters); void buildDataset(torch::Tensor& y); public: Classifier(Network model); @@ -44,7 +43,7 @@ namespace bayesnet { std::vector show() const override; std::vector topological_order() override; void dump_cpt() const override; - void setHyperparameters(const nlohmann::json& hyperparameters) override; + void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters }; } #endif diff --git a/src/BayesNet/KDB.cc b/src/BayesNet/KDB.cc index a6ed0c8..7781ca0 100644 --- a/src/BayesNet/KDB.cc +++ b/src/BayesNet/KDB.cc @@ -1,12 +1,13 @@ #include "KDB.h" namespace bayesnet { - KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {} + KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) + { + validHyperparameters = { "k", "theta" }; + + } void KDB::setHyperparameters(const nlohmann::json& hyperparameters) { - // Check if hyperparameters are valid - const std::vector validKeys = { "k", "theta" }; - checkHyperparameters(validKeys, hyperparameters); if (hyperparameters.contains("k")) { k = hyperparameters["k"]; } diff --git a/src/Platform/Experiment.cc b/src/Platform/Experiment.cc index 81d9755..5e80fc3 100644 --- a/src/Platform/Experiment.cc +++ b/src/Platform/Experiment.cc @@ -170,9 +170,9 @@ namespace platform { for (int nfold = 0; nfold < nfolds; nfold++) { auto clf = Models::instance()->create(model); setModelVersion(clf->getVersion()); - if (hyperparameters.notEmpty(fileName)) { - clf->setHyperparameters(hyperparameters.get(fileName)); - } + auto valid = clf->getValidHyperparameters(); + hyperparameters.check(valid, fileName); + clf->setHyperparameters(hyperparameters.get(fileName)); // Split train - test dataset train_timer.start(); auto [train, test] = fold->getFold(nfold); diff --git a/src/Platform/HyperParameters.cc b/src/Platform/HyperParameters.cc index 452e0a9..c7d8bcd 100644 --- a/src/Platform/HyperParameters.cc +++ b/src/Platform/HyperParameters.cc @@ -1,5 +1,6 @@ #include "HyperParameters.h" #include +#include namespace platform { HyperParameters::HyperParameters(const std::vector& datasets, const json& hyperparameters_) @@ -21,13 +22,24 @@ namespace platform { // Check if hyperparameters are valid for (const auto& dataset : datasets) { if (!input_hyperparameters.contains(dataset)) { - throw std::runtime_error("Dataset " + dataset + " not found in hyperparameters file"); + std::cerr << "*Warning: Dataset " << dataset << " not found in hyperparameters file" << " assuming default hyperparameters" << std::endl; + hyperparameters[dataset] = json({}); + continue; } - hyperparameters[dataset] = input_hyperparameters[dataset]; + hyperparameters[dataset] = input_hyperparameters[dataset].get(); } } - json HyperParameters::get(const std::string& key) + void HyperParameters::check(const std::vector& valid, const std::string& fileName) { - return hyperparameters.at(key); + json result = hyperparameters.at(fileName); + for (const auto& item : result.items()) { + if (find(valid.begin(), valid.end(), item.key()) == valid.end()) { + throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid. Passed Hyperparameters are: " + result.dump(4)); + } + } + } + json HyperParameters::get(const std::string& fileName) + { + return hyperparameters.at(fileName); } } /* namespace platform */ \ No newline at end of file diff --git a/src/Platform/HyperParameters.h b/src/Platform/HyperParameters.h index da22fff..3628fb8 100644 --- a/src/Platform/HyperParameters.h +++ b/src/Platform/HyperParameters.h @@ -13,8 +13,9 @@ namespace platform { explicit HyperParameters(const std::vector& datasets, const json& hyperparameters_); explicit HyperParameters(const std::vector& datasets, const std::string& hyperparameters_file); ~HyperParameters() = default; - bool notEmpty(const std::string& key) const { return hyperparameters.at(key) != json(); } - json get(const std::string& key); + bool notEmpty(const std::string& key) const { return !hyperparameters.at(key).empty(); } + void check(const std::vector& valid, const std::string& fileName); + json get(const std::string& fileName); private: std::map hyperparameters; }; diff --git a/src/PyClassifiers/ODTE.cc b/src/PyClassifiers/ODTE.cc index f168f43..4991bd9 100644 --- a/src/PyClassifiers/ODTE.cc +++ b/src/PyClassifiers/ODTE.cc @@ -1,15 +1,12 @@ #include "ODTE.h" namespace pywrap { + ODTE::ODTE() : PyClassifier("odte", "Odte") + { + validHyperparameters = { "n_jobs", "n_estimators", "random_state" }; + } std::string ODTE::graph() { return callMethodString("graph"); } - void ODTE::setHyperparameters(const nlohmann::json& hyperparameters) - { - // Check if hyperparameters are valid - const std::vector validKeys = { "n_jobs", "n_estimators", "random_state" }; - checkHyperparameters(validKeys, hyperparameters); - this->hyperparameters = hyperparameters; - } } /* namespace pywrap */ \ No newline at end of file diff --git a/src/PyClassifiers/ODTE.h b/src/PyClassifiers/ODTE.h index 1c90951..9d44b24 100644 --- a/src/PyClassifiers/ODTE.h +++ b/src/PyClassifiers/ODTE.h @@ -6,10 +6,9 @@ namespace pywrap { class ODTE : public PyClassifier { public: - ODTE() : PyClassifier("odte", "Odte") {}; + ODTE(); ~ODTE() = default; std::string graph(); - void setHyperparameters(const nlohmann::json& hyperparameters) override; }; } /* namespace pywrap */ #endif /* ODTE_H */ \ No newline at end of file diff --git a/src/PyClassifiers/PyClassifier.cc b/src/PyClassifiers/PyClassifier.cc index c15b9b7..9406166 100644 --- a/src/PyClassifiers/PyClassifier.cc +++ b/src/PyClassifiers/PyClassifier.cc @@ -83,17 +83,6 @@ namespace pywrap { } void PyClassifier::setHyperparameters(const nlohmann::json& hyperparameters) { - // Check if hyperparameters are valid, default is no hyperparameters - const std::vector validKeys = { }; - checkHyperparameters(validKeys, hyperparameters); this->hyperparameters = hyperparameters; } - void PyClassifier::checkHyperparameters(const std::vector& validKeys, const nlohmann::json& hyperparameters) - { - for (const auto& item : hyperparameters.items()) { - if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) { - throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid"); - } - } - } } /* namespace pywrap */ \ No newline at end of file diff --git a/src/PyClassifiers/PyClassifier.h b/src/PyClassifiers/PyClassifier.h index 7fe460a..d037673 100644 --- a/src/PyClassifiers/PyClassifier.h +++ b/src/PyClassifiers/PyClassifier.h @@ -40,7 +40,6 @@ namespace pywrap { void dump_cpt() const override {}; void setHyperparameters(const nlohmann::json& hyperparameters) override; protected: - void checkHyperparameters(const std::vector& validKeys, const nlohmann::json& hyperparameters); nlohmann::json hyperparameters; void trainModel(const torch::Tensor& weights) override {}; private: diff --git a/src/PyClassifiers/RandomForest.cc b/src/PyClassifiers/RandomForest.cc index 64e33ec..a4c3f9f 100644 --- a/src/PyClassifiers/RandomForest.cc +++ b/src/PyClassifiers/RandomForest.cc @@ -1,11 +1,8 @@ #include "RandomForest.h" namespace pywrap { - void RandomForest::setHyperparameters(const nlohmann::json& hyperparameters) + RandomForest::RandomForest() : PyClassifier("sklearn.ensemble", "RandomForestClassifier", true) { - // Check if hyperparameters are valid - const std::vector validKeys = { "n_estimators", "n_jobs", "random_state" }; - checkHyperparameters(validKeys, hyperparameters); - this->hyperparameters = hyperparameters; + validHyperparameters = { "n_estimators", "n_jobs", "random_state" }; } } /* namespace pywrap */ \ No newline at end of file diff --git a/src/PyClassifiers/RandomForest.h b/src/PyClassifiers/RandomForest.h index 001aef0..e22af10 100644 --- a/src/PyClassifiers/RandomForest.h +++ b/src/PyClassifiers/RandomForest.h @@ -5,9 +5,8 @@ namespace pywrap { class RandomForest : public PyClassifier { public: - RandomForest() : PyClassifier("sklearn.ensemble", "RandomForestClassifier", true) {}; + RandomForest(); ~RandomForest() = default; - void setHyperparameters(const nlohmann::json& hyperparameters) override; }; } /* namespace pywrap */ #endif /* RANDOMFOREST_H */ \ No newline at end of file diff --git a/src/PyClassifiers/STree.cc b/src/PyClassifiers/STree.cc index 9e43e5e..f97ed94 100644 --- a/src/PyClassifiers/STree.cc +++ b/src/PyClassifiers/STree.cc @@ -1,15 +1,12 @@ #include "STree.h" namespace pywrap { + STree::STree() : PyClassifier("stree", "Stree") + { + validHyperparameters = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy", "gamma", "max_features", "degree" }; + }; std::string STree::graph() { return callMethodString("graph"); } - void STree::setHyperparameters(const nlohmann::json& hyperparameters) - { - // Check if hyperparameters are valid - const std::vector validKeys = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy" }; - checkHyperparameters(validKeys, hyperparameters); - this->hyperparameters = hyperparameters; - } } /* namespace pywrap */ \ No newline at end of file diff --git a/src/PyClassifiers/STree.h b/src/PyClassifiers/STree.h index a803e71..7b0b8e4 100644 --- a/src/PyClassifiers/STree.h +++ b/src/PyClassifiers/STree.h @@ -6,10 +6,9 @@ namespace pywrap { class STree : public PyClassifier { public: - STree() : PyClassifier("stree", "Stree") {}; + STree(); ~STree() = default; std::string graph(); - void setHyperparameters(const nlohmann::json& hyperparameters) override; }; } /* namespace pywrap */ #endif /* STREE_H */ \ No newline at end of file diff --git a/src/PyClassifiers/SVC.cc b/src/PyClassifiers/SVC.cc index 6f0f725..cce7650 100644 --- a/src/PyClassifiers/SVC.cc +++ b/src/PyClassifiers/SVC.cc @@ -1,11 +1,8 @@ #include "SVC.h" namespace pywrap { - void SVC::setHyperparameters(const nlohmann::json& hyperparameters) + SVC::SVC() : PyClassifier("sklearn.svm", "SVC", true) { - // Check if hyperparameters are valid - const std::vector validKeys = { "C", "gamma", "kernel", "random_state" }; - checkHyperparameters(validKeys, hyperparameters); - this->hyperparameters = hyperparameters; + validHyperparameters = { "C", "gamma", "kernel", "random_state" }; } } /* namespace pywrap */ \ No newline at end of file diff --git a/src/PyClassifiers/SVC.h b/src/PyClassifiers/SVC.h index fc5a9ec..77b2624 100644 --- a/src/PyClassifiers/SVC.h +++ b/src/PyClassifiers/SVC.h @@ -5,10 +5,9 @@ namespace pywrap { class SVC : public PyClassifier { public: - SVC() : PyClassifier("sklearn.svm", "SVC", true) {}; + SVC(); ~SVC() = default; - void setHyperparameters(const nlohmann::json& hyperparameters) override; }; } /* namespace pywrap */ -#endif /* STREE_H */ \ No newline at end of file +#endif /* SVC_H */ \ No newline at end of file diff --git a/stree_results.json b/stree_results.json new file mode 100644 index 0000000..c1ef8cb --- /dev/null +++ b/stree_results.json @@ -0,0 +1,835 @@ +[ + { + "date": "2021-04-11", + "time": "18:46:29", + "type": "crossval", + "classifier": "stree", + "dataset": "balance-scale", + "accuracy": "0.97056", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 10000.0, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}", + "time_spent": "0.0135214", + "time_spent_std": "0.00111213", + "accuracy_std": "0.0150468", + "nodes": "7.0", + "leaves": "4.0", + "depth": "3.0" + }, + { + "date": "2021-04-11", + "time": "18:46:29", + "type": "crossval", + "classifier": "stree", + "dataset": "balloons", + "accuracy": "0.86", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}", + "time_spent": "0.000804768", + "time_spent_std": "7.74797e-05", + "accuracy_std": "0.285015", + "nodes": "3.0", + "leaves": "2.0", + "depth": "2.0" + }, + { + "date": "2021-04-11", + "time": "18:46:29", + "type": "crossval", + "classifier": "stree", + "dataset": "breast-cancer-wisc-diag", + "accuracy": "0.972764", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.2, \"max_iter\": 10000.0}", + "time_spent": "0.00380772", + "time_spent_std": "0.000638676", + "accuracy_std": "0.0173132", + "nodes": "3.24", + "leaves": "2.12", + "depth": "2.12" + }, + { + "date": "2021-04-11", + "time": "18:46:30", + "type": "crossval", + "classifier": "stree", + "dataset": "breast-cancer-wisc-prog", + "accuracy": "0.811128", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.2, \"max_iter\": 10000.0}", + "time_spent": "0.00767535", + "time_spent_std": "0.00148114", + "accuracy_std": "0.0584601", + "nodes": "5.84", + "leaves": "3.42", + "depth": "3.24" + }, + { + "date": "2021-04-11", + "time": "18:46:31", + "type": "crossval", + "classifier": "stree", + "dataset": "breast-cancer-wisc", + "accuracy": "0.966661", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.00652217", + "time_spent_std": "0.000726579", + "accuracy_std": "0.0139421", + "nodes": "8.88", + "leaves": "4.94", + "depth": "4.08" + }, + { + "date": "2021-04-11", + "time": "18:46:32", + "type": "crossval", + "classifier": "stree", + "dataset": "breast-cancer", + "accuracy": "0.734211", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.023475", + "time_spent_std": "0.00584447", + "accuracy_std": "0.0479774", + "nodes": "21.72", + "leaves": "11.36", + "depth": "5.86" + }, + { + "date": "2021-04-11", + "time": "18:49:08", + "type": "crossval", + "classifier": "stree", + "dataset": "cardiotocography-10clases", + "accuracy": "0.791487", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "3.10582", + "time_spent_std": "0.339218", + "accuracy_std": "0.0192082", + "nodes": "160.76", + "leaves": "80.88", + "depth": "22.86" + }, + { + "date": "2021-04-11", + "time": "18:50:01", + "type": "crossval", + "classifier": "stree", + "dataset": "cardiotocography-3clases", + "accuracy": "0.900613", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "1.05228", + "time_spent_std": "0.138768", + "accuracy_std": "0.0154004", + "nodes": "47.68", + "leaves": "24.34", + "depth": "8.84" + }, + { + "date": "2021-04-11", + "time": "18:50:01", + "type": "crossval", + "classifier": "stree", + "dataset": "conn-bench-sonar-mines-rocks", + "accuracy": "0.755528", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.011577", + "time_spent_std": "0.00341148", + "accuracy_std": "0.0678424", + "nodes": "6.08", + "leaves": "3.54", + "depth": "2.86" + }, + { + "date": "2021-04-11", + "time": "18:50:17", + "type": "crossval", + "classifier": "stree", + "dataset": "cylinder-bands", + "accuracy": "0.715049", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.301143", + "time_spent_std": "0.109773", + "accuracy_std": "0.0367646", + "nodes": "26.2", + "leaves": "13.6", + "depth": "6.82" + }, + { + "date": "2021-04-11", + "time": "18:50:19", + "type": "crossval", + "classifier": "stree", + "dataset": "dermatology", + "accuracy": "0.971833", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 55, \"max_iter\": 10000.0}", + "time_spent": "0.0377538", + "time_spent_std": "0.010726", + "accuracy_std": "0.0206883", + "nodes": "11.0", + "leaves": "6.0", + "depth": "6.0" + }, + { + "date": "2021-04-11", + "time": "18:50:19", + "type": "crossval", + "classifier": "stree", + "dataset": "echocardiogram", + "accuracy": "0.814758", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_features\": \"auto\", \"max_iter\": 10000.0}", + "time_spent": "0.00333449", + "time_spent_std": "0.000964686", + "accuracy_std": "0.0998078", + "nodes": "7.0", + "leaves": "4.0", + "depth": "3.54" + }, + { + "date": "2021-04-11", + "time": "18:50:20", + "type": "crossval", + "classifier": "stree", + "dataset": "fertility", + "accuracy": "0.88", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0}", + "time_spent": "0.00090271", + "time_spent_std": "8.96446e-05", + "accuracy_std": "0.0547723", + "nodes": "1.0", + "leaves": "1.0", + "depth": "1.0" + }, + { + "date": "2021-04-11", + "time": "18:50:21", + "type": "crossval", + "classifier": "stree", + "dataset": "haberman-survival", + "accuracy": "0.735637", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.0171611", + "time_spent_std": "0.00334945", + "accuracy_std": "0.0434614", + "nodes": "23.4", + "leaves": "12.2", + "depth": "5.98" + }, + { + "date": "2021-04-11", + "time": "18:50:21", + "type": "crossval", + "classifier": "stree", + "dataset": "heart-hungarian", + "accuracy": "0.827522", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}", + "time_spent": "0.00493946", + "time_spent_std": "0.000738198", + "accuracy_std": "0.0505283", + "nodes": "10.16", + "leaves": "5.58", + "depth": "4.0" + }, + { + "date": "2021-04-11", + "time": "18:50:21", + "type": "crossval", + "classifier": "stree", + "dataset": "hepatitis", + "accuracy": "0.824516", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}", + "time_spent": "0.0021534", + "time_spent_std": "0.000133715", + "accuracy_std": "0.0738872", + "nodes": "3.0", + "leaves": "2.0", + "depth": "2.0" + }, + { + "date": "2021-04-11", + "time": "18:50:23", + "type": "crossval", + "classifier": "stree", + "dataset": "ilpd-indian-liver", + "accuracy": "0.723498", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.0345243", + "time_spent_std": "0.015789", + "accuracy_std": "0.0384886", + "nodes": "16.04", + "leaves": "8.52", + "depth": "5.28" + }, + { + "date": "2021-04-11", + "time": "18:50:24", + "type": "crossval", + "classifier": "stree", + "dataset": "ionosphere", + "accuracy": "0.953276", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}", + "time_spent": "0.00881722", + "time_spent_std": "0.000843108", + "accuracy_std": "0.0238537", + "nodes": "3.16", + "leaves": "2.08", + "depth": "2.08" + }, + { + "date": "2021-04-11", + "time": "18:50:24", + "type": "crossval", + "classifier": "stree", + "dataset": "iris", + "accuracy": "0.965333", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.00357342", + "time_spent_std": "0.000400509", + "accuracy_std": "0.0319444", + "nodes": "5.0", + "leaves": "3.0", + "depth": "3.0" + }, + { + "date": "2021-04-11", + "time": "18:50:36", + "type": "crossval", + "classifier": "stree", + "dataset": "led-display", + "accuracy": "0.703", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.222106", + "time_spent_std": "0.0116922", + "accuracy_std": "0.0291204", + "nodes": "47.16", + "leaves": "24.08", + "depth": "17.76" + }, + { + "date": "2021-04-11", + "time": "18:51:18", + "type": "crossval", + "classifier": "stree", + "dataset": "libras", + "accuracy": "0.788611", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.08, \"max_iter\": 10000.0}", + "time_spent": "0.841714", + "time_spent_std": "0.0830966", + "accuracy_std": "0.0516913", + "nodes": "82.28", + "leaves": "41.64", + "depth": "28.84" + }, + { + "date": "2021-04-11", + "time": "18:51:41", + "type": "crossval", + "classifier": "stree", + "dataset": "low-res-spect", + "accuracy": "0.883782", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}", + "time_spent": "0.446301", + "time_spent_std": "0.0411822", + "accuracy_std": "0.0324593", + "nodes": "27.4", + "leaves": "14.2", + "depth": "10.74" + }, + { + "date": "2021-04-11", + "time": "18:51:41", + "type": "crossval", + "classifier": "stree", + "dataset": "lymphography", + "accuracy": "0.835034", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}", + "time_spent": "0.00539465", + "time_spent_std": "0.000754365", + "accuracy_std": "0.0590649", + "nodes": "9.04", + "leaves": "5.02", + "depth": "4.48" + }, + { + "date": "2021-04-11", + "time": "18:51:43", + "type": "crossval", + "classifier": "stree", + "dataset": "mammographic", + "accuracy": "0.81915", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.0227931", + "time_spent_std": "0.00328533", + "accuracy_std": "0.0222517", + "nodes": "7.4", + "leaves": "4.2", + "depth": "4.0" + }, + { + "date": "2021-04-11", + "time": "18:51:43", + "type": "crossval", + "classifier": "stree", + "dataset": "molec-biol-promoter", + "accuracy": "0.767056", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}", + "time_spent": "0.00130273", + "time_spent_std": "0.000105772", + "accuracy_std": "0.0910923", + "nodes": "3.0", + "leaves": "2.0", + "depth": "2.0" + }, + { + "date": "2021-04-11", + "time": "18:51:44", + "type": "crossval", + "classifier": "stree", + "dataset": "musk-1", + "accuracy": "0.916388", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}", + "time_spent": "0.0116367", + "time_spent_std": "0.000331845", + "accuracy_std": "0.0275208", + "nodes": "3.0", + "leaves": "2.0", + "depth": "2.0" + }, + { + "date": "2021-04-11", + "time": "18:51:55", + "type": "crossval", + "classifier": "stree", + "dataset": "oocytes_merluccius_nucleus_4d", + "accuracy": "0.835125", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 8.25, \"gamma\": 0.1, \"kernel\": \"poly\"}", + "time_spent": "0.208895", + "time_spent_std": "0.0270573", + "accuracy_std": "0.0220961", + "nodes": "10.52", + "leaves": "5.76", + "depth": "4.42" + }, + { + "date": "2021-04-11", + "time": "18:52:04", + "type": "crossval", + "classifier": "stree", + "dataset": "oocytes_merluccius_states_2f", + "accuracy": "0.915365", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.182198", + "time_spent_std": "0.0294267", + "accuracy_std": "0.020396", + "nodes": "18.04", + "leaves": "9.52", + "depth": "5.3" + }, + { + "date": "2021-04-11", + "time": "18:52:41", + "type": "crossval", + "classifier": "stree", + "dataset": "oocytes_trisopterus_nucleus_2f", + "accuracy": "0.800986", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.717113", + "time_spent_std": "0.209608", + "accuracy_std": "0.0218449", + "nodes": "29.88", + "leaves": "15.44", + "depth": "7.38" + }, + { + "date": "2021-04-11", + "time": "18:52:44", + "type": "crossval", + "classifier": "stree", + "dataset": "oocytes_trisopterus_states_5b", + "accuracy": "0.922249", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.11, \"max_iter\": 10000.0}", + "time_spent": "0.0545047", + "time_spent_std": "0.00853014", + "accuracy_std": "0.0179203", + "nodes": "7.44", + "leaves": "4.22", + "depth": "3.6" + }, + { + "date": "2021-04-11", + "time": "18:52:44", + "type": "crossval", + "classifier": "stree", + "dataset": "parkinsons", + "accuracy": "0.882051", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.00795048", + "time_spent_std": "0.00176761", + "accuracy_std": "0.0478327", + "nodes": "8.48", + "leaves": "4.74", + "depth": "3.76" + }, + { + "date": "2021-04-11", + "time": "18:52:48", + "type": "crossval", + "classifier": "stree", + "dataset": "pima", + "accuracy": "0.766651", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.0750048", + "time_spent_std": "0.0213995", + "accuracy_std": "0.0297203", + "nodes": "17.4", + "leaves": "9.2", + "depth": "5.66" + }, + { + "date": "2021-04-11", + "time": "18:52:48", + "type": "crossval", + "classifier": "stree", + "dataset": "pittsburg-bridges-MATERIAL", + "accuracy": "0.867749", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}", + "time_spent": "0.00293318", + "time_spent_std": "0.000331469", + "accuracy_std": "0.0712226", + "nodes": "5.16", + "leaves": "3.08", + "depth": "3.02" + }, + { + "date": "2021-04-11", + "time": "18:52:49", + "type": "crossval", + "classifier": "stree", + "dataset": "pittsburg-bridges-REL-L", + "accuracy": "0.632238", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.0136311", + "time_spent_std": "0.00322964", + "accuracy_std": "0.101211", + "nodes": "16.32", + "leaves": "8.66", + "depth": "5.96" + }, + { + "date": "2021-04-11", + "time": "18:52:50", + "type": "crossval", + "classifier": "stree", + "dataset": "pittsburg-bridges-SPAN", + "accuracy": "0.659766", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}", + "time_spent": "0.00524256", + "time_spent_std": "0.00158822", + "accuracy_std": "0.1165", + "nodes": "9.84", + "leaves": "5.42", + "depth": "4.58" + }, + { + "date": "2021-04-11", + "time": "18:52:50", + "type": "crossval", + "classifier": "stree", + "dataset": "pittsburg-bridges-T-OR-D", + "accuracy": "0.861619", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.00295627", + "time_spent_std": "0.000578594", + "accuracy_std": "0.0693747", + "nodes": "4.56", + "leaves": "2.78", + "depth": "2.68" + }, + { + "date": "2021-04-11", + "time": "18:52:50", + "type": "crossval", + "classifier": "stree", + "dataset": "planning", + "accuracy": "0.73527", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 7, \"gamma\": 10.0, \"kernel\": \"rbf\", \"max_iter\": 10000.0}", + "time_spent": "0.0030475", + "time_spent_std": "0.000172266", + "accuracy_std": "0.0669776", + "nodes": "3.0", + "leaves": "2.0", + "depth": "2.0" + }, + { + "date": "2021-04-11", + "time": "18:52:51", + "type": "crossval", + "classifier": "stree", + "dataset": "post-operative", + "accuracy": "0.711111", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 55, \"degree\": 5, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}", + "time_spent": "0.0018727", + "time_spent_std": "0.000481977", + "accuracy_std": "0.0753592", + "nodes": "2.64", + "leaves": "1.82", + "depth": "1.82" + }, + { + "date": "2021-04-11", + "time": "18:52:52", + "type": "crossval", + "classifier": "stree", + "dataset": "seeds", + "accuracy": "0.952857", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 10000.0, \"max_iter\": 10000.0}", + "time_spent": "0.0203492", + "time_spent_std": "0.00518065", + "accuracy_std": "0.0279658", + "nodes": "9.88", + "leaves": "5.44", + "depth": "4.44" + }, + { + "date": "2021-04-11", + "time": "18:52:52", + "type": "crossval", + "classifier": "stree", + "dataset": "statlog-australian-credit", + "accuracy": "0.678261", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0}", + "time_spent": "0.00205337", + "time_spent_std": "0.00083162", + "accuracy_std": "0.0390498", + "nodes": "1.32", + "leaves": "1.16", + "depth": "1.16" + }, + { + "date": "2021-04-11", + "time": "18:53:07", + "type": "crossval", + "classifier": "stree", + "dataset": "statlog-german-credit", + "accuracy": "0.7625", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.290754", + "time_spent_std": "0.0653152", + "accuracy_std": "0.0271892", + "nodes": "21.24", + "leaves": "11.12", + "depth": "6.18" + }, + { + "date": "2021-04-11", + "time": "18:53:09", + "type": "crossval", + "classifier": "stree", + "dataset": "statlog-heart", + "accuracy": "0.822963", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.0138923", + "time_spent_std": "0.00323664", + "accuracy_std": "0.044004", + "nodes": "14.56", + "leaves": "7.78", + "depth": "5.0" + }, + { + "date": "2021-04-11", + "time": "18:56:43", + "type": "crossval", + "classifier": "stree", + "dataset": "statlog-image", + "accuracy": "0.955931", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 7, \"max_iter\": 10000.0}", + "time_spent": "4.27584", + "time_spent_std": "0.200362", + "accuracy_std": "0.00956073", + "nodes": "36.92", + "leaves": "18.96", + "depth": "10.8" + }, + { + "date": "2021-04-11", + "time": "18:56:57", + "type": "crossval", + "classifier": "stree", + "dataset": "statlog-vehicle", + "accuracy": "0.793028", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.278833", + "time_spent_std": "0.0392173", + "accuracy_std": "0.030104", + "nodes": "23.88", + "leaves": "12.44", + "depth": "7.06" + }, + { + "date": "2021-04-11", + "time": "18:57:07", + "type": "crossval", + "classifier": "stree", + "dataset": "synthetic-control", + "accuracy": "0.95", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.55, \"max_iter\": 10000.0}", + "time_spent": "0.205184", + "time_spent_std": "0.040793", + "accuracy_std": "0.0253859", + "nodes": "12.48", + "leaves": "6.74", + "depth": "6.5" + }, + { + "date": "2021-04-11", + "time": "18:57:08", + "type": "crossval", + "classifier": "stree", + "dataset": "tic-tac-toe", + "accuracy": "0.984444", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.2, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}", + "time_spent": "0.0123015", + "time_spent_std": "0.000423728", + "accuracy_std": "0.00838747", + "nodes": "3.0", + "leaves": "2.0", + "depth": "2.0" + }, + { + "date": "2021-04-11", + "time": "18:57:09", + "type": "crossval", + "classifier": "stree", + "dataset": "vertebral-column-2clases", + "accuracy": "0.852903", + "norm": 1, + "stand": 0, + "parameters": "{}", + "time_spent": "0.00576833", + "time_spent_std": "0.000910332", + "accuracy_std": "0.0408851", + "nodes": "6.04", + "leaves": "3.52", + "depth": "3.34" + }, + { + "date": "2021-04-11", + "time": "18:57:09", + "type": "crossval", + "classifier": "stree", + "dataset": "wine", + "accuracy": "0.979159", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.55, \"max_iter\": 10000.0}", + "time_spent": "0.0019741", + "time_spent_std": "0.000137745", + "accuracy_std": "0.022427", + "nodes": "5.0", + "leaves": "3.0", + "depth": "3.0" + }, + { + "date": "2021-04-11", + "time": "18:57:10", + "type": "crossval", + "classifier": "stree", + "dataset": "zoo", + "accuracy": "0.957524", + "norm": 1, + "stand": 0, + "parameters": "{\"C\": 0.1, \"max_iter\": 10000.0}", + "time_spent": "0.00556221", + "time_spent_std": "0.000230106", + "accuracy_std": "0.0454615", + "nodes": "13.04", + "leaves": "7.02", + "depth": "7.02" + } +] \ No newline at end of file