diff --git a/README.md b/README.md index e1c8400..3db71e2 100644 --- a/README.md +++ b/README.md @@ -5,7 +5,7 @@ ![Gitea Release](https://img.shields.io/gitea/v/release/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000) [![Codacy Badge](https://app.codacy.com/project/badge/Grade/cf3e0ac71d764650b1bf4d8d00d303b1)](https://app.codacy.com/gh/Doctorado-ML/BayesNet/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade) ![Gitea Last Commit](https://img.shields.io/gitea/last-commit/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000&logo=gitea) -![Static Badge](https://img.shields.io/badge/Coverage-97,1%25-green) +![Static Badge](https://img.shields.io/badge/Coverage-97,2%25-green) Bayesian Network Classifiers using libtorch from scratch diff --git a/tests/TestBayesClassifier.cc b/tests/TestBayesClassifier.cc index 729f01e..9b2bb85 100644 --- a/tests/TestBayesClassifier.cc +++ b/tests/TestBayesClassifier.cc @@ -79,6 +79,14 @@ TEST_CASE("Topological order", "[Classifier]") REQUIRE(order[2] == "sepalwidth"); REQUIRE(order[3] == "petalwidth"); } +TEST_CASE("Dump_cpt", "[Classifier]") +{ + auto model = bayesnet::TAN(); + auto raw = RawDatasets("iris", true); + model.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); + auto cpt = model.dump_cpt(); + REQUIRE(cpt.size() == 1713); +} TEST_CASE("Not fitted model", "[Classifier]") { auto model = bayesnet::TAN();