From 3b0653432714e8fbe9edfb076847101c8630bbf5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ricardo=20Montan=CC=83ana?= Date: Thu, 28 Sep 2023 00:59:34 +0200 Subject: [PATCH] Remove duplicated code in BestResults --- src/Platform/BestResults.cc | 246 +++--------------------------------- src/Platform/BestResults.h | 6 +- src/Platform/Statistics.cc | 7 +- src/Platform/Statistics.h | 2 +- 4 files changed, 25 insertions(+), 236 deletions(-) diff --git a/src/Platform/BestResults.cc b/src/Platform/BestResults.cc index 7aec335..5c41d27 100644 --- a/src/Platform/BestResults.cc +++ b/src/Platform/BestResults.cc @@ -7,8 +7,6 @@ #include "Result.h" #include "Colors.h" #include "Statistics.h" -#include -#include @@ -27,12 +25,6 @@ std::string ftime_to_string(TP tp) buffer << std::put_time(gmt, "%Y-%m-%d %H:%M"); return buffer.str(); } -struct WTL { - int win; - int tie; - int loss; -}; - namespace platform { string BestResults::build() @@ -114,9 +106,10 @@ namespace platform { } throw invalid_argument("Unable to open result file. [" + fileName + "]"); } - set BestResults::getModels() + vector BestResults::getModels() { set models; + vector result; auto files = loadResultFiles(); if (files.size() == 0) { cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << endl; @@ -129,7 +122,8 @@ namespace platform { // add the model to the vector of models models.insert(fileModel); } - return models; + result = vector(models.begin(), models.end()); + return result; } void BestResults::buildAll() @@ -171,7 +165,7 @@ namespace platform { odd = !odd; } } - json BestResults::buildTableResults(set models) + json BestResults::buildTableResults(vector models) { int numberOfDatasets = 0; bool first = true; @@ -208,168 +202,8 @@ namespace platform { table["dateTable"] = ftime_to_string(maxDate); return table; } - map assignRanks(vector>& ranksOrder) - { - // sort the ranksOrder vector by value - sort(ranksOrder.begin(), ranksOrder.end(), [](const pair& a, const pair& b) { - return a.second > b.second; - }); - //Assign ranks to values and if they are the same they share the same averaged rank - map ranks; - for (int i = 0; i < ranksOrder.size(); i++) { - ranks[ranksOrder[i].first] = i + 1.0; - } - int i = 0; - while (i < static_cast(ranksOrder.size())) { - int j = i + 1; - int sumRanks = ranks[ranksOrder[i].first]; - while (j < static_cast(ranksOrder.size()) && ranksOrder[i].second == ranksOrder[j].second) { - sumRanks += ranks[ranksOrder[j++].first]; - } - if (j > i + 1) { - float averageRank = (float)sumRanks / (j - i); - for (int k = i; k < j; k++) { - ranks[ranksOrder[k].first] = averageRank; - } - } - i = j; - } - return ranks; - } - map computeWTL(int controlIdx, vector models, json table) - { - // Compute the WTL matrix - map wtl; - int nModels = models.size(); - for (int i = 0; i < nModels; ++i) { - wtl[i] = { 0, 0, 0 }; - } - json origin = table.begin().value(); - for (auto const& item : origin.items()) { - auto controlModel = models.at(controlIdx); - double controlValue = table[controlModel].at(item.key()).at(0).get(); - for (int i = 0; i < nModels; ++i) { - if (i == controlIdx) { - continue; - } - double value = table[models[i]].at(item.key()).at(0).get(); - if (value < controlValue) { - wtl[i].win++; - } else if (value == controlValue) { - wtl[i].tie++; - } else { - wtl[i].loss++; - } - } - } - return wtl; - } - - void postHocHolm(int controlIdx, vector models, int nDatasets, map ranks, double significance, map wtl) - { - // Reference https://link.springer.com/article/10.1007/s44196-022-00083-8 - // Post-hoc Holm test - // Calculate the p-value for the models paired with the control model - int nModels = models.size(); - map stats; // p-value of each model paired with the control model - boost::math::normal dist(0.0, 1.0); - double diff = sqrt(nModels * (nModels + 1) / (6.0 * nDatasets)); - for (int i = 0; i < nModels; i++) { - if (i == controlIdx) { - stats[i] = 0.0; - continue; - } - double z = abs(ranks.at(models[controlIdx]) - ranks.at(models[i])) / diff; - double p_value = (long double)2 * (1 - cdf(dist, z)); - stats[i] = p_value; - } - // Sort the models by p-value - vector> statsOrder; - for (const auto& stat : stats) { - statsOrder.push_back({ stat.first, stat.second }); - } - sort(statsOrder.begin(), statsOrder.end(), [](const pair& a, const pair& b) { - return a.second < b.second; - }); - - // Holm adjustment - for (int i = 0; i < statsOrder.size(); ++i) { - auto item = statsOrder.at(i); - double before = i == 0 ? 0.0 : statsOrder.at(i - 1).second; - double p_value = min((double)1.0, item.second * (nModels - i)); - p_value = max(before, p_value); - statsOrder[i] = { item.first, p_value }; - } - cout << Colors::CYAN(); - cout << " *************************************************************************************************************" << endl; - cout << " Post-hoc Holm test: H0: 'There is no significant differences between the control model and the other models.'" << endl; - cout << " Control model: " << models[controlIdx] << endl; - cout << " Model p-value rank win tie loss" << endl; - cout << " ============ ============ ========= === === ====" << endl; - // sort ranks from lowest to highest - vector> ranksOrder; - for (const auto& rank : ranks) { - ranksOrder.push_back({ rank.first, rank.second }); - } - sort(ranksOrder.begin(), ranksOrder.end(), [](const pair& a, const pair& b) { - return a.second < b.second; - }); - for (const auto& item : ranksOrder) { - if (item.first == models.at(controlIdx)) { - continue; - } - auto idx = distance(models.begin(), find(models.begin(), models.end(), item.first)); - double pvalue = 0.0; - for (const auto& stat : statsOrder) { - if (stat.first == idx) { - pvalue = stat.second; - } - } - cout << " " << left << setw(12) << item.first << " " << setprecision(10) << fixed << pvalue << setprecision(7) << " " << item.second; - cout << " " << right << setw(3) << wtl.at(idx).win << " " << setw(3) << wtl.at(idx).tie << " " << setw(4) << wtl.at(idx).loss << endl; - } - cout << " *************************************************************************************************************" << endl; - cout << Colors::RESET(); - } - bool friedmanTest(vector models, int nDatasets, map ranks, double significance = 0.05) - { - // Friedman test - // Calculate the Friedman statistic - int nModels = models.size(); - if (nModels < 3 || nDatasets < 3) { - throw runtime_error("Can't make the Friedman test with less than 3 models and/or less than 3 datasets."); - } - cout << Colors::BLUE() << endl; - cout << "***************************************************************************************************************" << endl; - cout << Colors::GREEN() << "Friedman test: H0: 'There is no significant differences between all the classifiers.'" << Colors::BLUE() << endl; - double degreesOfFreedom = nModels - 1.0; - double sumSquared = 0; - for (const auto& rank : ranks) { - sumSquared += pow(rank.second, 2); - } - // Compute the Friedman statistic as in https://link.springer.com/article/10.1007/s44196-022-00083-8 - double friedmanQ = 12.0 * nDatasets / (nModels * (nModels + 1)) * (sumSquared - (nModels * pow(nModels + 1, 2)) / 4); - cout << "Friedman statistic: " << friedmanQ << endl; - // Calculate the critical value - boost::math::chi_squared chiSquared(degreesOfFreedom); - long double p_value = (long double)1.0 - cdf(chiSquared, friedmanQ); - double criticalValue = quantile(chiSquared, 1 - significance); - std::cout << "Critical Chi-Square Value for df=" << fixed << (int)degreesOfFreedom - << " and alpha=" << setprecision(2) << fixed << significance << ": " << setprecision(7) << scientific << criticalValue << std::endl; - cout << "p-value: " << scientific << p_value << " is " << (p_value < significance ? "less" : "greater") << " than " << setprecision(2) << fixed << significance << endl; - bool result; - if (p_value < significance) { - cout << Colors::GREEN() << "The null hypothesis H0 is rejected." << endl; - result = true; - } else { - cout << Colors::YELLOW() << "The null hypothesis H0 is accepted. Computed p-values will not be significant." << endl; - result = false; - } - cout << Colors::BLUE() << "***************************************************************************************************************" << endl; - return result; - } - void BestResults::printTableResults(set models, json table) + void BestResults::printTableResults(vector models, json table) { cout << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get() << endl; cout << "------------------------------------------------" << endl; @@ -386,8 +220,6 @@ namespace platform { auto i = 0; bool odd = true; map totals; - map ranks; - map ranksTotal; int nDatasets = table.begin().value().size(); for (const auto& model : models) { totals[model] = 0.0; @@ -398,23 +230,12 @@ namespace platform { cout << color << setw(3) << fixed << right << i++ << " "; cout << setw(25) << left << item.key() << " "; double maxValue = 0; - vector> ranksOrder; // Find out the max value for this dataset for (const auto& model : models) { double value = table[model].at(item.key()).at(0).get(); if (value > maxValue) { maxValue = value; } - ranksOrder.push_back({ model, value }); - } - // Assign the ranks - ranks = assignRanks(ranksOrder); - if (ranksTotal.size() == 0) { - ranksTotal = ranks; - } else { - for (const auto& rank : ranks) { - ranksTotal[rank.first] += rank.second; - } } // Print the row with red colors on max values for (const auto& model : models) { @@ -425,7 +246,6 @@ namespace platform { } totals[model] += value; cout << efectiveColor << setw(12) << setprecision(10) << fixed << value << " "; - // cout << efectiveColor << setw(12) << setprecision(10) << fixed << ranks[model] << " "; } cout << endl; odd = !odd; @@ -449,50 +269,7 @@ namespace platform { } cout << efectiveColor << setw(12) << setprecision(9) << fixed << totals[model] << " "; } - // Output the averaged ranks cout << endl; - int min = 1; - for (auto& rank : ranksTotal) { - if (rank.second < min) { - min = rank.second; - } - rank.second /= nDatasets; - } - cout << Colors::BLUE() << setw(30) << " Ranks...................."; - for (const auto& model : models) { - string efectiveColor = Colors::BLUE(); - if (ranksTotal[model] == min) { - efectiveColor = Colors::RED(); - } - cout << efectiveColor << setw(12) << setprecision(4) << fixed << (double)ranksTotal[model] << " "; - } - cout << endl; - cout << Colors::GREEN() << setw(30) << " Averaged ranks..........."; - for (const auto& model : models) { - string efectiveColor = Colors::GREEN(); - if (ranksTotal[model] == min) { - efectiveColor = Colors::RED(); - } - cout << efectiveColor << setw(12) << setprecision(9) << fixed << (double)ranksTotal[model] << " "; - } - cout << endl; - vector vModels(models.begin(), models.end()); - vector datasets; - for (const auto& dataset : table.begin().value().items()) { - datasets.push_back(dataset.key()); - } - double significance = 0.05; - if (friedman) { - friedmanTest(vModels, nDatasets, ranksTotal, significance); - // Stablish the control model as the one with the lowest averaged rank - int controlIdx = distance(ranks.begin(), min_element(ranks.begin(), ranks.end(), [](const auto& l, const auto& r) { return l.second < r.second; })); - auto wtl = computeWTL(controlIdx, vModels, table); - postHocHolm(controlIdx, vModels, nDatasets, ranksTotal, significance, wtl); - } - - Statistics stats(vModels, datasets, table, significance); - stats.friedmanTest(); - stats.postHocHolmTest(); } void BestResults::reportAll() { @@ -501,5 +278,16 @@ namespace platform { json table = buildTableResults(models); // Print the table of results printTableResults(models, table); + // Compute the Friedman test + if (friedman) { + vector datasets; + for (const auto& dataset : table.begin().value().items()) { + datasets.push_back(dataset.key()); + } + double significance = 0.05; + Statistics stats(models, datasets, table, significance); + auto result = stats.friedmanTest(); + stats.postHocHolmTest(result); + } } } \ No newline at end of file diff --git a/src/Platform/BestResults.h b/src/Platform/BestResults.h index 5495222..8ad0f8f 100644 --- a/src/Platform/BestResults.h +++ b/src/Platform/BestResults.h @@ -14,10 +14,10 @@ namespace platform { void reportAll(); void buildAll(); private: - set getModels(); + vector getModels(); vector loadResultFiles(); - json buildTableResults(set models); - void printTableResults(set models, json table); + json buildTableResults(vector models); + void printTableResults(vector models, json table); string bestResultFile(); json loadFile(const string& fileName); string path; diff --git a/src/Platform/Statistics.cc b/src/Platform/Statistics.cc index 33b2f57..f4d72f2 100644 --- a/src/Platform/Statistics.cc +++ b/src/Platform/Statistics.cc @@ -102,7 +102,7 @@ namespace platform { } } - void Statistics::postHocHolmTest() + void Statistics::postHocHolmTest(bool friedmanResult) { if (!fitted) { fit(); @@ -139,7 +139,8 @@ namespace platform { p_value = max(before, p_value); statsOrder[i] = { item.first, p_value }; } - cout << Colors::MAGENTA(); + auto color = friedmanResult ? Colors::GREEN() : Colors::YELLOW(); + cout << color; cout << " *************************************************************************************************************" << endl; cout << " Post-hoc Holm test: H0: 'There is no significant differences between the control model and the other models.'" << endl; cout << " Control model: " << models[controlIdx] << endl; @@ -203,7 +204,7 @@ namespace platform { cout << Colors::YELLOW() << "The null hypothesis H0 is accepted. Computed p-values will not be significant." << endl; result = false; } - cout << Colors::BLUE() << "***************************************************************************************************************" << endl; + cout << Colors::BLUE() << "***************************************************************************************************************" << Colors::RESET() << endl; return result; } } // namespace platform diff --git a/src/Platform/Statistics.h b/src/Platform/Statistics.h index 92c8a2a..bae91fa 100644 --- a/src/Platform/Statistics.h +++ b/src/Platform/Statistics.h @@ -17,7 +17,7 @@ namespace platform { public: Statistics(vector& models, vector& datasets, json data, double significance = 0.05); bool friedmanTest(); - void postHocHolmTest(); + void postHocHolmTest(bool friedmanResult); private: void fit(); void computeRanks();