Fix syntax errors

This commit is contained in:
Ricardo Montañana Gómez 2023-12-28 23:21:50 +01:00
parent 21c4c6df51
commit 343269d48c
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
2 changed files with 124 additions and 24 deletions

View File

@ -28,6 +28,11 @@ namespace platform {
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
std::string get_color_rank(int rank)
{
auto colors = { Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
return *(colors.begin() + rank % colors.size());
}
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
{
}
@ -104,20 +109,16 @@ namespace platform {
auto datasets = Datasets(false, Paths::datasets());
auto all_datasets = datasets.getNames();
auto datasets_names = processDatasets(datasets);
for (const auto& dataset : datasets_names) {
for (int idx_dataset = 0; idx_dataset < all_datasets.size(); ++idx_dataset) {
auto dataset = all_datasets[idx_dataset];
for (const auto& seed : config.seeds) {
auto combinations = grid.getGrid(dataset);
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
auto it = find(all_datasets.begin(), all_datasets.end(), dataset);
if (it == all_datasets.end()) {
throw std::invalid_argument("Dataset " + dataset + " not found");
}
auto idx_dataset = std::distance(all_datasets.begin(), it);
json task = {
{ "dataset", dataset },
{ "idx_dataset", idx_dataset},
{ "seed", seed },
{ "fold", n_fold}
{ "fold", n_fold},
};
tasks.push_back(task);
}
@ -134,8 +135,96 @@ namespace platform {
std::cout << "|" << std::endl << "|" << std::flush;
return tasks;
}
void process_task_mpi(struct ConfigMPI& config_mpi, int task, Task_Result* result)
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
{
// initialize
Timer timer;
timer.start();
json task = tasks[n_task];
auto model = config.model;
auto grid = GridData(Paths::grid_input(model));
auto dataset = task["dataset"].get<std::string>();
auto idx_dataset = task["idx_dataset"].get<int>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
bool stratified = config.stratified;
// Generate the hyperparamters combinations
auto combinations = grid.getGrid(dataset);
auto [X, y] = datasets.getTensors(dataset);
auto states = datasets.getStates(dataset);
auto features = datasets.getFeatures(dataset);
auto className = datasets.getClassName(dataset);
//
// Start working on task
//
Fold* fold;
if (stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
auto [train, test] = fold->getFold(n_fold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
auto num = 0;
double best_fold_score = 0.0;
int best_idx_combination = -1;
json best_fold_hyper;
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
auto hyperparam_line = combinations[idx_combination];
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
Fold* nested_fold;
if (config.stratified)
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new KFold(config.nested, y_train.size(0), seed);
double score = 0.0;
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// Nested level fold
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nested_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
// Build Classifier with selected hyperparameters
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(hyperparameters.get(dataset));
// Train model
clf->fit(X_nested_train, y_nested_train, features, className, states);
// Test model
score += clf->score(X_nested_test, y_nested_test);
}
delete nested_fold;
score /= config.nested;
if (score > best_fold_score) {
best_fold_score = score;
best_idx_combination = idx_combination;
best_fold_hyper = hyperparam_line;
}
}
delete fold;
// Build Classifier with the best hyperparameters to obtain the best score
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(best_fold_hyper);
clf->fit(X_train, y_train, features, className, states);
best_fold_score = clf->score(X_test, y_test);
// Return the result
result->idx_dataset = task["idx_dataset"].get<int>();
result->idx_combination = best_idx_combination;
result->score = best_fold_score;
result->time = timer.getDuration();
// Update progress bar
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
}
std::pair<int, int> GridSearch::part_range_mpi(int n_tasks, int nprocs, int rank)
{
@ -155,14 +244,10 @@ namespace platform {
}
return { start, end };
}
std::string get_color_rank(int rank)
{
auto colors = { Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
return *(colors.begin() + rank % colors.size());
}
void producer(json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
json producer(json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
json results;
int num_tasks = tasks.size();
for (int i = 0; i < num_tasks; ++i) {
MPI_Status status;
@ -183,8 +268,17 @@ namespace platform {
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
}
return results;
}
void consumer(json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
json select_best_results_folds(json& all_results)
{
json results;
//
// Select the best result of the computed outer folds
//
return results;
}
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
// Anounce to the producer
@ -197,7 +291,7 @@ namespace platform {
break;
}
// Process task
process_task_mpi(config_mpi, task, &result);
process_task_mpi_consumer(config, config_mpi, tasks, task, datasets, &result);
// Send result to producer
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
}
@ -236,21 +330,23 @@ namespace platform {
Task_Result result;
int tasks_size;
MPI_Datatype MPI_Result;
MPI_Datatype type[3] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_DOUBLE };
int blocklen[3] = { 1, 1, 1 };
MPI_Aint disp[3];
MPI_Datatype type[4] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_DOUBLE, MPI_DOUBLE };
int blocklen[4] = { 1, 1, 1, 1 };
MPI_Aint disp[4];
disp[0] = offsetof(Task_Result, idx_dataset);
disp[1] = offsetof(Task_Result, idx_combination);
disp[2] = offsetof(Task_Result, score);
MPI_Type_create_struct(3, blocklen, disp, type, &MPI_Result);
disp[3] = offsetof(Task_Result, time);
MPI_Type_create_struct(4, blocklen, disp, type, &MPI_Result);
MPI_Type_commit(&MPI_Result);
//
// 0.2 Manager creates the tasks
//
char* msg;
json tasks;
if (config_mpi.rank == config_mpi.manager) {
timer.start();
auto tasks = build_tasks_mpi();
tasks = build_tasks_mpi();
auto tasks_str = tasks.dump();
tasks_size = tasks_str.size();
msg = new char[tasks_size + 1];
@ -264,15 +360,18 @@ namespace platform {
msg = new char[tasks_size + 1];
}
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
json tasks = json::parse(msg);
tasks = json::parse(msg);
delete[] msg;
//
// 2. All Workers will receive the tasks and start the process
//
auto datasets = Datasets(config.discretize, Paths::datasets());
if (config_mpi.rank == config_mpi.manager) {
producer(tasks, config_mpi, MPI_Result);
auto all_results = producer(tasks, config_mpi, MPI_Result);
auto results = select_best_results_folds(all_results);
save(results);
} else {
consumer(tasks, config_mpi, MPI_Result);
consumer(datasets, tasks, config, config_mpi, MPI_Result);
}
}
void GridSearch::go_mpi(struct ConfigMPI& config_mpi)

View File

@ -34,6 +34,7 @@ namespace platform {
uint idx_dataset;
uint idx_combination;
double score;
double time;
} Task_Result;
const int TAG_QUERY = 1;
const int TAG_RESULT = 2;