Added ExactInference and Factor classes
This commit is contained in:
parent
ad255625e8
commit
12f0e1e063
@ -1,2 +1,2 @@
|
|||||||
add_library(BayesNet Network.cc Node.cc)
|
add_library(BayesNet Network.cc Node.cc ExactInference.cc Factor.cc)
|
||||||
target_link_libraries(BayesNet "${TORCH_LIBRARIES}")
|
target_link_libraries(BayesNet "${TORCH_LIBRARIES}")
|
48
src/ExactInference.cc
Normal file
48
src/ExactInference.cc
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
#include "ExactInference.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
ExactInference::ExactInference(Network& net) : network(net), evidence(map<string, int>()), candidates(net.getFeatures()) {}
|
||||||
|
void ExactInference::setEvidence(const map<string, int>& evidence)
|
||||||
|
{
|
||||||
|
this->evidence = evidence;
|
||||||
|
}
|
||||||
|
ExactInference::~ExactInference()
|
||||||
|
{
|
||||||
|
for (auto& factor : factors) {
|
||||||
|
delete factor;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void ExactInference::buildFactors()
|
||||||
|
{
|
||||||
|
for (auto node : network.getNodes()) {
|
||||||
|
factors.push_back(node.second->toFactor());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
string ExactInference::nextCandidate()
|
||||||
|
{
|
||||||
|
string result = "";
|
||||||
|
map<string, Node*> nodes = network.getNodes();
|
||||||
|
int minFill = INT_MAX;
|
||||||
|
for (auto candidate : candidates) {
|
||||||
|
unsigned fill = nodes[candidate]->minFill();
|
||||||
|
if (fill < minFill) {
|
||||||
|
minFill = fill;
|
||||||
|
result = candidate;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
vector<double> ExactInference::variableElimination()
|
||||||
|
{
|
||||||
|
vector<double> result;
|
||||||
|
string candidate;
|
||||||
|
buildFactors();
|
||||||
|
// Eliminate evidence
|
||||||
|
while ((candidate = nextCandidate()) != "") {
|
||||||
|
// Erase candidate from candidates (Erase–remove idiom)
|
||||||
|
candidates.erase(remove(candidates.begin(), candidates.end(), candidate), candidates.end());
|
||||||
|
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
}
|
27
src/ExactInference.h
Normal file
27
src/ExactInference.h
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
#ifndef EXACTINFERENCE_H
|
||||||
|
#define EXACTINFERENCE_H
|
||||||
|
#include "Network.h"
|
||||||
|
#include "Factor.h"
|
||||||
|
#include "Node.h"
|
||||||
|
#include <map>
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
class ExactInference {
|
||||||
|
private:
|
||||||
|
Network network;
|
||||||
|
map<string, int> evidence;
|
||||||
|
vector<Factor*> factors;
|
||||||
|
vector<string> candidates; // variables to be removed
|
||||||
|
void buildFactors();
|
||||||
|
string nextCandidate(); // Return the next variable to eliminate using MinFill criterion
|
||||||
|
public:
|
||||||
|
ExactInference(Network&);
|
||||||
|
~ExactInference();
|
||||||
|
void setEvidence(const map<string, int>&);
|
||||||
|
vector<double> variableElimination();
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
10
src/Factor.cc
Normal file
10
src/Factor.cc
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
#include "Factor.h"
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
Factor::Factor(vector<string>& variables, vector<int>& cardinalities, torch::Tensor& values) : variables(variables), cardinalities(cardinalities), values(values) {}
|
||||||
|
Factor::~Factor() = default;
|
||||||
|
}
|
27
src/Factor.h
Normal file
27
src/Factor.h
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
#ifndef FACTOR_H
|
||||||
|
#define FACTOR_H
|
||||||
|
#include <torch/torch.h>
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
class Factor {
|
||||||
|
private:
|
||||||
|
vector<string> variables;
|
||||||
|
vector<int> cardinalities;
|
||||||
|
torch::Tensor values;
|
||||||
|
public:
|
||||||
|
Factor(vector<string>&, vector<int>&, torch::Tensor&);
|
||||||
|
~Factor();
|
||||||
|
Factor(const Factor&);
|
||||||
|
Factor& operator=(const Factor&);
|
||||||
|
void setVariables(vector<string>&);
|
||||||
|
void setCardinalities(vector<int>&);
|
||||||
|
void setValues(torch::Tensor&);
|
||||||
|
vector<string>& getVariables();
|
||||||
|
vector<int>& getCardinalities();
|
||||||
|
torch::Tensor& getValues();
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
@ -1,4 +1,5 @@
|
|||||||
#include "Network.h"
|
#include "Network.h"
|
||||||
|
#include "ExactInference.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
Network::Network() : laplaceSmoothing(1), root(nullptr), features(vector<string>()), className("") {}
|
Network::Network() : laplaceSmoothing(1), root(nullptr), features(vector<string>()), className("") {}
|
||||||
Network::Network(int smoothing) : laplaceSmoothing(smoothing), root(nullptr), features(vector<string>()), className("") {}
|
Network::Network(int smoothing) : laplaceSmoothing(smoothing), root(nullptr), features(vector<string>()), className("") {}
|
||||||
@ -26,6 +27,10 @@ namespace bayesnet {
|
|||||||
root = nodes[name];
|
root = nodes[name];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
vector<string> Network::getFeatures()
|
||||||
|
{
|
||||||
|
return features;
|
||||||
|
}
|
||||||
void Network::setRoot(string name)
|
void Network::setRoot(string name)
|
||||||
{
|
{
|
||||||
if (nodes.find(name) == nodes.end()) {
|
if (nodes.find(name) == nodes.end()) {
|
||||||
@ -120,37 +125,7 @@ namespace bayesnet {
|
|||||||
node->setCPT(cpt);
|
node->setCPT(cpt);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// pair<int, double> Network::predict_sample(const vector<int>& sample)
|
|
||||||
// {
|
|
||||||
|
|
||||||
|
|
||||||
// // For each possible class, calculate the posterior probability
|
|
||||||
// Node* classNode = nodes[className];
|
|
||||||
// int numClassStates = classNode->getNumStates();
|
|
||||||
// vector<double> classProbabilities(numClassStates, 0.0);
|
|
||||||
// for (int classState = 0; classState < numClassStates; ++classState) {
|
|
||||||
// // Start with the prior probability of the class
|
|
||||||
// classProbabilities[classState] = classNode->getCPT()[classState].item<double>();
|
|
||||||
|
|
||||||
// // Multiply by the likelihood of each feature given the class
|
|
||||||
// for (auto& pair : nodes) {
|
|
||||||
// if (pair.first != className) {
|
|
||||||
// Node* node = pair.second;
|
|
||||||
// int featureValue = featureValues[pair.first];
|
|
||||||
|
|
||||||
// // We use the class as the parent state to index into the CPT
|
|
||||||
// classProbabilities[classState] *= node->getCPT()[classState][featureValue].item<double>();
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
|
|
||||||
// // Find the class with the maximum posterior probability
|
|
||||||
// auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
|
||||||
// int predictedClass = distance(classProbabilities.begin(), maxElem);
|
|
||||||
// double maxProbability = *maxElem;
|
|
||||||
|
|
||||||
// return make_pair(predictedClass, maxProbability);
|
|
||||||
// }
|
|
||||||
vector<int> Network::predict(const vector<vector<int>>& samples)
|
vector<int> Network::predict(const vector<vector<int>>& samples)
|
||||||
{
|
{
|
||||||
vector<int> predictions;
|
vector<int> predictions;
|
||||||
@ -195,15 +170,13 @@ namespace bayesnet {
|
|||||||
throw invalid_argument("Sample size (" + to_string(sample.size()) +
|
throw invalid_argument("Sample size (" + to_string(sample.size()) +
|
||||||
") does not match the number of features (" + to_string(features.size()) + ")");
|
") does not match the number of features (" + to_string(features.size()) + ")");
|
||||||
}
|
}
|
||||||
// Map the feature values to their corresponding nodes
|
auto inference = ExactInference(*this);
|
||||||
map<string, int> featureValues;
|
map<string, int> evidence;
|
||||||
for (int i = 0; i < features.size(); ++i) {
|
for (int i = 0; i < sample.size(); ++i) {
|
||||||
featureValues[features[i]] = sample[i];
|
evidence[features[i]] = sample[i];
|
||||||
}
|
}
|
||||||
|
inference.setEvidence(evidence);
|
||||||
// For each possible class, calculate the posterior probability
|
vector<double> classProbabilities = inference.variableElimination();
|
||||||
Network network = *this;
|
|
||||||
vector<double> classProbabilities = eliminateVariables(network, featureValues);
|
|
||||||
|
|
||||||
// Normalize the probabilities to sum to 1
|
// Normalize the probabilities to sum to 1
|
||||||
double sum = accumulate(classProbabilities.begin(), classProbabilities.end(), 0.0);
|
double sum = accumulate(classProbabilities.begin(), classProbabilities.end(), 0.0);
|
||||||
@ -217,8 +190,4 @@ namespace bayesnet {
|
|||||||
|
|
||||||
return make_pair(predictedClass, maxProbability);
|
return make_pair(predictedClass, maxProbability);
|
||||||
}
|
}
|
||||||
vector<double> eliminateVariables(network, featureValues)
|
|
||||||
{
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
@ -16,7 +16,6 @@ namespace bayesnet {
|
|||||||
int laplaceSmoothing;
|
int laplaceSmoothing;
|
||||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||||
pair<int, double> predict_sample(const vector<int>&);
|
pair<int, double> predict_sample(const vector<int>&);
|
||||||
vector<double> eliminateVariables(Network&, const map<string, int>&);
|
|
||||||
public:
|
public:
|
||||||
Network();
|
Network();
|
||||||
Network(int);
|
Network(int);
|
||||||
@ -25,6 +24,7 @@ namespace bayesnet {
|
|||||||
void addNode(string, int);
|
void addNode(string, int);
|
||||||
void addEdge(const string, const string);
|
void addEdge(const string, const string);
|
||||||
map<string, Node*>& getNodes();
|
map<string, Node*>& getNodes();
|
||||||
|
vector<string> getFeatures();
|
||||||
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
|
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
|
||||||
void estimateParameters();
|
void estimateParameters();
|
||||||
void setRoot(string);
|
void setRoot(string);
|
||||||
|
43
src/Node.cc
43
src/Node.cc
@ -53,4 +53,47 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
this->cpt = cpt;
|
this->cpt = cpt;
|
||||||
}
|
}
|
||||||
|
/*
|
||||||
|
The MinFill criterion is a heuristic for variable elimination.
|
||||||
|
The variable that minimizes the number of edges that need to be added to the graph to make it triangulated.
|
||||||
|
This is done by counting the number of edges that need to be added to the graph if the variable is eliminated.
|
||||||
|
The variable with the minimum number of edges is chosen.
|
||||||
|
Here this is done computing the length of the combinations of the node neighbors taken 2 by 2.
|
||||||
|
*/
|
||||||
|
unsigned Node::minFill()
|
||||||
|
{
|
||||||
|
set<string> neighbors;
|
||||||
|
for (auto child : children) {
|
||||||
|
neighbors.emplace(child->getName());
|
||||||
|
}
|
||||||
|
for (auto parent : parents) {
|
||||||
|
neighbors.emplace(parent->getName());
|
||||||
|
}
|
||||||
|
return combinations(neighbors).size();
|
||||||
|
}
|
||||||
|
vector<string> Node::combinations(const set<string>& neighbors)
|
||||||
|
{
|
||||||
|
vector<string> source(neighbors.begin(), neighbors.end());
|
||||||
|
vector<string> result;
|
||||||
|
for (int i = 0; i < source.size(); ++i) {
|
||||||
|
string temp = source[i];
|
||||||
|
for (int j = i + 1; j < source.size(); ++j) {
|
||||||
|
result.push_back(temp + source[j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
Factor* Node::toFactor()
|
||||||
|
{
|
||||||
|
vector<string> variables;
|
||||||
|
vector<int> cardinalities;
|
||||||
|
variables.push_back(name);
|
||||||
|
cardinalities.push_back(numStates);
|
||||||
|
for (auto parent : parents) {
|
||||||
|
variables.push_back(parent->getName());
|
||||||
|
cardinalities.push_back(parent->getNumStates());
|
||||||
|
}
|
||||||
|
return new Factor(variables, cardinalities, cpt);
|
||||||
|
|
||||||
|
}
|
||||||
}
|
}
|
@ -1,6 +1,7 @@
|
|||||||
#ifndef NODE_H
|
#ifndef NODE_H
|
||||||
#define NODE_H
|
#define NODE_H
|
||||||
#include <torch/torch.h>
|
#include <torch/torch.h>
|
||||||
|
#include "Factor.h"
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <string>
|
#include <string>
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
@ -15,6 +16,7 @@ namespace bayesnet {
|
|||||||
torch::Tensor cpTable;
|
torch::Tensor cpTable;
|
||||||
int numStates;
|
int numStates;
|
||||||
torch::Tensor cpt;
|
torch::Tensor cpt;
|
||||||
|
vector<string> combinations(const set<string>&);
|
||||||
public:
|
public:
|
||||||
Node(const std::string&, int);
|
Node(const std::string&, int);
|
||||||
void addParent(Node*);
|
void addParent(Node*);
|
||||||
@ -28,7 +30,9 @@ namespace bayesnet {
|
|||||||
void setCPT(const torch::Tensor&);
|
void setCPT(const torch::Tensor&);
|
||||||
int getNumStates() const;
|
int getNumStates() const;
|
||||||
void setNumStates(int);
|
void setNumStates(int);
|
||||||
|
unsigned minFill();
|
||||||
int getId() const { return id; }
|
int getId() const { return id; }
|
||||||
|
Factor* toFactor();
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
Loading…
Reference in New Issue
Block a user