2023-10-04 21:19:23 +00:00
|
|
|
#include <catch2/catch_test_macros.hpp>
|
|
|
|
#include <catch2/catch_approx.hpp>
|
|
|
|
#include <catch2/generators/catch_generators.hpp>
|
|
|
|
#include "BayesMetrics.h"
|
2023-10-04 23:14:16 +00:00
|
|
|
#include "TestUtils.h"
|
2023-10-04 21:19:23 +00:00
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
TEST_CASE("Metrics Test", "[Metrics]")
|
|
|
|
{
|
2023-10-04 23:14:16 +00:00
|
|
|
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
|
|
|
map<string, pair<int, vector<int>>> results = {
|
|
|
|
{"glass", {7, { 3, 2, 0, 1, 6, 7, 5 }}},
|
|
|
|
{"iris", {3, { 1, 0, 2 }} },
|
|
|
|
{"ecoli", {6, { 2, 3, 1, 0, 4, 5 }}},
|
|
|
|
{"diabetes", {2, { 2, 0 }}}
|
|
|
|
};
|
|
|
|
auto [XDisc, yDisc, featuresDisc, classNameDisc, statesDisc] = loadDataset(file_name, true, true);
|
|
|
|
int classNumStates = statesDisc.at(classNameDisc).size();
|
|
|
|
auto yresized = torch::transpose(yDisc.view({ yDisc.size(0), 1 }), 0, 1);
|
|
|
|
torch::Tensor dataset = torch::cat({ XDisc, yresized }, 0);
|
|
|
|
int nSamples = dataset.size(1);
|
|
|
|
|
2023-10-04 21:19:23 +00:00
|
|
|
SECTION("Test Constructor")
|
|
|
|
{
|
2023-10-04 23:14:16 +00:00
|
|
|
bayesnet::Metrics metrics(XDisc, featuresDisc, classNameDisc, classNumStates);
|
|
|
|
REQUIRE(metrics.getScoresKBest().size() == 0);
|
2023-10-04 21:19:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
SECTION("Test SelectKBestWeighted")
|
|
|
|
{
|
2023-10-04 23:14:16 +00:00
|
|
|
bayesnet::Metrics metrics(XDisc, featuresDisc, classNameDisc, classNumStates);
|
|
|
|
torch::Tensor weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
|
|
|
|
vector<int> kBest = metrics.SelectKBestWeighted(weights, true, results.at(file_name).first);
|
|
|
|
REQUIRE(kBest.size() == results.at(file_name).first);
|
|
|
|
REQUIRE(kBest == results.at(file_name).second);
|
2023-10-04 21:19:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
SECTION("Test mutualInformation")
|
|
|
|
{
|
2023-10-04 23:14:16 +00:00
|
|
|
// torch::Tensor samples = torch::rand({ 10, 5 });
|
|
|
|
// vector<string> features = { "feature1", "feature2", "feature3", "feature4", "feature5" };
|
|
|
|
// string className = "class1";
|
|
|
|
// int classNumStates = 2;
|
2023-10-04 21:19:23 +00:00
|
|
|
|
2023-10-04 23:14:16 +00:00
|
|
|
// bayesnet::Metrics obj(samples, features, className, classNumStates);
|
2023-10-04 21:19:23 +00:00
|
|
|
|
2023-10-04 23:14:16 +00:00
|
|
|
// torch::Tensor firstFeature = samples.select(1, 0);
|
|
|
|
// torch::Tensor secondFeature = samples.select(1, 1);
|
|
|
|
// torch::Tensor weights = torch::ones({ 10 });
|
2023-10-04 21:19:23 +00:00
|
|
|
|
2023-10-04 23:14:16 +00:00
|
|
|
// double mi = obj.mutualInformation(firstFeature, secondFeature, weights);
|
2023-10-04 21:19:23 +00:00
|
|
|
|
2023-10-04 23:14:16 +00:00
|
|
|
// REQUIRE(mi >= 0);
|
2023-10-04 21:19:23 +00:00
|
|
|
}
|
|
|
|
}
|