2024-04-19 12:33:00 +00:00
|
|
|
@startuml
|
|
|
|
title clang-uml class diagram model
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::Node" as C_0010428199432536647474
|
|
|
|
class C_0010428199432536647474 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+Node(const std::string &) : void
|
|
|
|
..
|
|
|
|
+addChild(Node *) : void
|
|
|
|
+addParent(Node *) : void
|
|
|
|
+clear() : void
|
2024-11-23 19:28:16 +00:00
|
|
|
+computeCPT(const torch::Tensor & dataset, const std::vector<std::string> & features, const double smoothing, const torch::Tensor & weights) : void
|
2024-04-19 12:33:00 +00:00
|
|
|
+getCPT() : torch::Tensor &
|
|
|
|
+getChildren() : std::vector<Node *> &
|
2024-11-23 19:28:16 +00:00
|
|
|
+getFactorValue(std::map<std::string,int> &) : double
|
2024-04-19 12:33:00 +00:00
|
|
|
+getName() const : std::string
|
|
|
|
+getNumStates() const : int
|
|
|
|
+getParents() : std::vector<Node *> &
|
|
|
|
+graph(const std::string & clasName) : std::vector<std::string>
|
|
|
|
+minFill() : unsigned int
|
|
|
|
+removeChild(Node *) : void
|
|
|
|
+removeParent(Node *) : void
|
|
|
|
+setNumStates(int) : void
|
|
|
|
__
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
enum "bayesnet::Smoothing_t" as C_0013393078277439680282
|
|
|
|
enum C_0013393078277439680282 {
|
|
|
|
NONE
|
|
|
|
ORIGINAL
|
|
|
|
LAPLACE
|
|
|
|
CESTNIK
|
|
|
|
}
|
|
|
|
class "bayesnet::Network" as C_0009493661199123436603
|
|
|
|
class C_0009493661199123436603 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+Network() : void
|
|
|
|
+Network(const Network &) : void
|
|
|
|
+~Network() = default : void
|
|
|
|
..
|
|
|
|
+addEdge(const std::string &, const std::string &) : void
|
|
|
|
+addNode(const std::string &) : void
|
|
|
|
+dump_cpt() const : std::string
|
2024-11-23 19:28:16 +00:00
|
|
|
+fit(const torch::Tensor & samples, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
|
|
|
+fit(const torch::Tensor & X, const torch::Tensor & y, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
|
|
|
+fit(const std::vector<std::vector<int>> & input_data, const std::vector<int> & labels, const std::vector<double> & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
2024-04-19 12:33:00 +00:00
|
|
|
+getClassName() const : std::string
|
|
|
|
+getClassNumStates() const : int
|
|
|
|
+getEdges() const : std::vector<std::pair<std::string,std::string>>
|
|
|
|
+getFeatures() const : std::vector<std::string>
|
|
|
|
+getNodes() : std::map<std::string,std::unique_ptr<Node>> &
|
|
|
|
+getNumEdges() const : int
|
|
|
|
+getSamples() : torch::Tensor &
|
|
|
|
+getStates() const : int
|
|
|
|
+graph(const std::string & title) const : std::vector<std::string>
|
|
|
|
+initialize() : void
|
|
|
|
+predict(const std::vector<std::vector<int>> &) : std::vector<int>
|
|
|
|
+predict(const torch::Tensor &) : torch::Tensor
|
|
|
|
+predict_proba(const std::vector<std::vector<int>> &) : std::vector<std::vector<double>>
|
|
|
|
+predict_proba(const torch::Tensor &) : torch::Tensor
|
|
|
|
+predict_tensor(const torch::Tensor & samples, const bool proba) : torch::Tensor
|
|
|
|
+score(const std::vector<std::vector<int>> &, const std::vector<int> &) : double
|
|
|
|
+show() const : std::vector<std::string>
|
|
|
|
+topological_sort() : std::vector<std::string>
|
|
|
|
+version() : std::string
|
|
|
|
__
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
enum "bayesnet::status_t" as C_0005907365846270811004
|
|
|
|
enum C_0005907365846270811004 {
|
2024-04-19 12:33:00 +00:00
|
|
|
NORMAL
|
|
|
|
WARNING
|
|
|
|
ERROR
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
abstract "bayesnet::BaseClassifier" as C_0002617087915615796317
|
|
|
|
abstract C_0002617087915615796317 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+~BaseClassifier() = default : void
|
|
|
|
..
|
|
|
|
{abstract} +dump_cpt() const = 0 : std::string
|
2024-11-23 19:28:16 +00:00
|
|
|
{abstract} +fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
|
|
|
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
|
|
|
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
|
|
|
{abstract} +fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
2024-04-19 12:33:00 +00:00
|
|
|
{abstract} +getClassNumStates() const = 0 : int
|
|
|
|
{abstract} +getNotes() const = 0 : std::vector<std::string>
|
|
|
|
{abstract} +getNumberOfEdges() const = 0 : int
|
|
|
|
{abstract} +getNumberOfNodes() const = 0 : int
|
|
|
|
{abstract} +getNumberOfStates() const = 0 : int
|
|
|
|
{abstract} +getStatus() const = 0 : status_t
|
|
|
|
+getValidHyperparameters() : std::vector<std::string> &
|
|
|
|
{abstract} +getVersion() = 0 : std::string
|
|
|
|
{abstract} +graph(const std::string & title = "") const = 0 : std::vector<std::string>
|
|
|
|
{abstract} +predict(std::vector<std::vector<int>> & X) = 0 : std::vector<int>
|
|
|
|
{abstract} +predict(torch::Tensor & X) = 0 : torch::Tensor
|
|
|
|
{abstract} +predict_proba(std::vector<std::vector<int>> & X) = 0 : std::vector<std::vector<double>>
|
|
|
|
{abstract} +predict_proba(torch::Tensor & X) = 0 : torch::Tensor
|
|
|
|
{abstract} +score(std::vector<std::vector<int>> & X, std::vector<int> & y) = 0 : float
|
|
|
|
{abstract} +score(torch::Tensor & X, torch::Tensor & y) = 0 : float
|
|
|
|
{abstract} +setHyperparameters(const nlohmann::json & hyperparameters) = 0 : void
|
|
|
|
{abstract} +show() const = 0 : std::vector<std::string>
|
|
|
|
{abstract} +topological_order() = 0 : std::vector<std::string>
|
2024-11-23 19:28:16 +00:00
|
|
|
{abstract} #trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) = 0 : void
|
2024-04-19 12:33:00 +00:00
|
|
|
__
|
|
|
|
#validHyperparameters : std::vector<std::string>
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::Metrics" as C_0005895723015084986588
|
|
|
|
class C_0005895723015084986588 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+Metrics() = default : void
|
|
|
|
+Metrics(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
|
|
|
+Metrics(const std::vector<std::vector<int>> & vsamples, const std::vector<int> & labels, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
|
|
|
..
|
|
|
|
+SelectKBestWeighted(const torch::Tensor & weights, bool ascending = false, unsigned int k = 0) : std::vector<int>
|
|
|
|
+SelectKPairs(const torch::Tensor & weights, std::vector<int> & featuresExcluded, bool ascending = false, unsigned int k = 0) : std::vector<std::pair<int,int>>
|
|
|
|
+conditionalEdge(const torch::Tensor & weights) : torch::Tensor
|
|
|
|
+conditionalEntropy(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & labels, const torch::Tensor & weights) : double
|
|
|
|
+conditionalMutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & labels, const torch::Tensor & weights) : double
|
|
|
|
#doCombinations<T>(const std::vector<T> & source) : std::vector<std::pair<T, T> >
|
|
|
|
+entropy(const torch::Tensor & feature, const torch::Tensor & weights) : double
|
|
|
|
+getScoresKBest() const : std::vector<double>
|
|
|
|
+getScoresKPairs() const : std::vector<std::pair<std::pair<int,int>,double>>
|
|
|
|
+maximumSpanningTree(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : std::vector<std::pair<int,int>>
|
|
|
|
+mutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & weights) : double
|
|
|
|
#pop_first<T>(std::vector<T> & v) : T
|
|
|
|
__
|
|
|
|
#className : std::string
|
|
|
|
#features : std::vector<std::string>
|
|
|
|
#samples : torch::Tensor
|
|
|
|
}
|
|
|
|
abstract "bayesnet::Classifier" as C_0016351972983202413152
|
|
|
|
abstract C_0016351972983202413152 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+Classifier(Network model) : void
|
|
|
|
+~Classifier() = default : void
|
|
|
|
..
|
|
|
|
+addNodes() : void
|
|
|
|
#buildDataset(torch::Tensor & y) : void
|
|
|
|
{abstract} #buildModel(const torch::Tensor & weights) = 0 : void
|
|
|
|
#checkFitParameters() : void
|
|
|
|
+dump_cpt() const : std::string
|
2024-11-23 19:28:16 +00:00
|
|
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
|
|
|
+fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
|
|
|
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
|
|
|
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights, const Smoothing_t smoothing) : Classifier &
|
2024-04-19 12:33:00 +00:00
|
|
|
+getClassNumStates() const : int
|
|
|
|
+getNotes() const : std::vector<std::string>
|
|
|
|
+getNumberOfEdges() const : int
|
|
|
|
+getNumberOfNodes() const : int
|
|
|
|
+getNumberOfStates() const : int
|
|
|
|
+getStatus() const : status_t
|
|
|
|
+getVersion() : std::string
|
|
|
|
+predict(std::vector<std::vector<int>> & X) : std::vector<int>
|
|
|
|
+predict(torch::Tensor & X) : torch::Tensor
|
|
|
|
+predict_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
|
|
|
+predict_proba(torch::Tensor & X) : torch::Tensor
|
|
|
|
+score(torch::Tensor & X, torch::Tensor & y) : float
|
|
|
|
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
|
|
|
|
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
|
|
|
+show() const : std::vector<std::string>
|
|
|
|
+topological_order() : std::vector<std::string>
|
2024-11-23 19:28:16 +00:00
|
|
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
2024-04-19 12:33:00 +00:00
|
|
|
__
|
|
|
|
#className : std::string
|
|
|
|
#dataset : torch::Tensor
|
|
|
|
#features : std::vector<std::string>
|
|
|
|
#fitted : bool
|
|
|
|
#m : unsigned int
|
|
|
|
#metrics : Metrics
|
|
|
|
#model : Network
|
|
|
|
#n : unsigned int
|
|
|
|
#notes : std::vector<std::string>
|
|
|
|
#states : std::map<std::string,std::vector<int>>
|
|
|
|
#status : status_t
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::KDB" as C_0008902920152122000044
|
|
|
|
class C_0008902920152122000044 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+KDB(int k, float theta = 0.03) : void
|
|
|
|
+~KDB() = default : void
|
|
|
|
..
|
|
|
|
#buildModel(const torch::Tensor & weights) : void
|
|
|
|
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
|
|
|
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
|
|
|
__
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::SPODE" as C_0004096182510460307610
|
|
|
|
class C_0004096182510460307610 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+SPODE(int root) : void
|
|
|
|
+~SPODE() = default : void
|
|
|
|
..
|
|
|
|
#buildModel(const torch::Tensor & weights) : void
|
|
|
|
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
|
|
|
|
__
|
|
|
|
}
|
|
|
|
class "bayesnet::SPnDE" as C_0016268916386101512883
|
|
|
|
class C_0016268916386101512883 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+SPnDE(std::vector<int> parents) : void
|
|
|
|
+~SPnDE() = default : void
|
|
|
|
..
|
|
|
|
#buildModel(const torch::Tensor & weights) : void
|
|
|
|
+graph(const std::string & name = "SPnDE") const : std::vector<std::string>
|
|
|
|
__
|
|
|
|
}
|
|
|
|
class "bayesnet::TAN" as C_0014087955399074584137
|
|
|
|
class C_0014087955399074584137 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+TAN() : void
|
|
|
|
+~TAN() = default : void
|
|
|
|
..
|
|
|
|
#buildModel(const torch::Tensor & weights) : void
|
|
|
|
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
|
|
|
__
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::Proposal" as C_0017759964713298103839
|
|
|
|
class C_0017759964713298103839 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+Proposal(torch::Tensor & pDataset, std::vector<std::string> & features_, std::string & className_) : void
|
|
|
|
+~Proposal() : void
|
|
|
|
..
|
|
|
|
#checkInput(const torch::Tensor & X, const torch::Tensor & y) : void
|
|
|
|
#fit_local_discretization(const torch::Tensor & y) : std::map<std::string,std::vector<int>>
|
|
|
|
#localDiscretizationProposal(const std::map<std::string,std::vector<int>> & states, Network & model) : std::map<std::string,std::vector<int>>
|
|
|
|
#prepareX(torch::Tensor & X) : torch::Tensor
|
|
|
|
__
|
|
|
|
#Xf : torch::Tensor
|
|
|
|
#discretizers : map<std::string,mdlp::CPPFImdlp *>
|
|
|
|
#y : torch::Tensor
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::KDBLd" as C_0002756018222998454702
|
|
|
|
class C_0002756018222998454702 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+KDBLd(int k) : void
|
|
|
|
+~KDBLd() = default : void
|
|
|
|
..
|
|
|
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : KDBLd &
|
|
|
|
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
|
|
|
+predict(torch::Tensor & X) : torch::Tensor
|
|
|
|
{static} +version() : std::string
|
|
|
|
__
|
|
|
|
}
|
|
|
|
class "bayesnet::SPODELd" as C_0010957245114062042836
|
|
|
|
class C_0010957245114062042836 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+SPODELd(int root) : void
|
|
|
|
+~SPODELd() = default : void
|
|
|
|
..
|
|
|
|
+commonFit(const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
|
|
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
|
|
|
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
|
|
|
+graph(const std::string & name = "SPODELd") const : std::vector<std::string>
|
|
|
|
+predict(torch::Tensor & X) : torch::Tensor
|
|
|
|
{static} +version() : std::string
|
|
|
|
__
|
|
|
|
}
|
|
|
|
class "bayesnet::TANLd" as C_0013350632773616302678
|
|
|
|
class C_0013350632773616302678 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+TANLd() : void
|
|
|
|
+~TANLd() = default : void
|
|
|
|
..
|
2024-11-23 19:28:16 +00:00
|
|
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : TANLd &
|
|
|
|
+graph(const std::string & name = "TANLd") const : std::vector<std::string>
|
2024-04-19 12:33:00 +00:00
|
|
|
+predict(torch::Tensor & X) : torch::Tensor
|
|
|
|
__
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::Ensemble" as C_0015881931090842884611
|
|
|
|
class C_0015881931090842884611 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+Ensemble(bool predict_voting = true) : void
|
|
|
|
+~Ensemble() = default : void
|
|
|
|
..
|
|
|
|
#compute_arg_max(std::vector<std::vector<double>> & X) : std::vector<int>
|
|
|
|
#compute_arg_max(torch::Tensor & X) : torch::Tensor
|
|
|
|
+dump_cpt() const : std::string
|
|
|
|
+getNumberOfEdges() const : int
|
|
|
|
+getNumberOfNodes() const : int
|
|
|
|
+getNumberOfStates() const : int
|
|
|
|
+graph(const std::string & title) const : std::vector<std::string>
|
|
|
|
+predict(std::vector<std::vector<int>> & X) : std::vector<int>
|
|
|
|
+predict(torch::Tensor & X) : torch::Tensor
|
|
|
|
#predict_average_proba(torch::Tensor & X) : torch::Tensor
|
|
|
|
#predict_average_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
|
|
|
#predict_average_voting(torch::Tensor & X) : torch::Tensor
|
|
|
|
#predict_average_voting(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
|
|
|
+predict_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
|
|
|
+predict_proba(torch::Tensor & X) : torch::Tensor
|
|
|
|
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
|
|
|
|
+score(torch::Tensor & X, torch::Tensor & y) : float
|
|
|
|
+show() const : std::vector<std::string>
|
|
|
|
+topological_order() : std::vector<std::string>
|
|
|
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
|
|
|
#voting(torch::Tensor & votes) : torch::Tensor
|
|
|
|
__
|
|
|
|
#models : std::vector<std::unique_ptr<Classifier>>
|
|
|
|
#n_models : unsigned int
|
|
|
|
#predict_voting : bool
|
|
|
|
#significanceModels : std::vector<double>
|
|
|
|
}
|
|
|
|
class "bayesnet::A2DE" as C_0001410789567057647859
|
|
|
|
class C_0001410789567057647859 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+A2DE(bool predict_voting = false) : void
|
|
|
|
+~A2DE() : void
|
|
|
|
..
|
|
|
|
#buildModel(const torch::Tensor & weights) : void
|
|
|
|
+graph(const std::string & title = "A2DE") const : std::vector<std::string>
|
|
|
|
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
|
|
|
__
|
|
|
|
}
|
|
|
|
class "bayesnet::AODE" as C_0006288892608974306258
|
|
|
|
class C_0006288892608974306258 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+AODE(bool predict_voting = false) : void
|
|
|
|
+~AODE() : void
|
|
|
|
..
|
|
|
|
#buildModel(const torch::Tensor & weights) : void
|
|
|
|
+graph(const std::string & title = "AODE") const : std::vector<std::string>
|
|
|
|
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
|
|
|
__
|
|
|
|
}
|
|
|
|
abstract "bayesnet::FeatureSelect" as C_0013562609546004646591
|
|
|
|
abstract C_0013562609546004646591 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+FeatureSelect(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
|
|
|
+~FeatureSelect() : void
|
|
|
|
..
|
|
|
|
#computeMeritCFS() : double
|
|
|
|
#computeSuFeatures(const int a, const int b) : double
|
|
|
|
#computeSuLabels() : void
|
|
|
|
{abstract} +fit() = 0 : void
|
|
|
|
+getFeatures() const : std::vector<int>
|
|
|
|
+getScores() const : std::vector<double>
|
|
|
|
#initialize() : void
|
|
|
|
#symmetricalUncertainty(int a, int b) : double
|
|
|
|
__
|
|
|
|
#fitted : bool
|
|
|
|
#maxFeatures : int
|
|
|
|
#selectedFeatures : std::vector<int>
|
|
|
|
#selectedScores : std::vector<double>
|
|
|
|
#suFeatures : std::map<std::pair<int,int>,double>
|
|
|
|
#suLabels : std::vector<double>
|
|
|
|
#weights : const torch::Tensor &
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::(anonymous_60342586)" as C_0005584545181746538542
|
|
|
|
class C_0005584545181746538542 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
__
|
|
|
|
+CFS : std::string
|
|
|
|
+FCBF : std::string
|
|
|
|
+IWSS : std::string
|
|
|
|
}
|
|
|
|
class "bayesnet::(anonymous_60343240)" as C_0016227156982041949444
|
|
|
|
class C_0016227156982041949444 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
__
|
|
|
|
+ASC : std::string
|
|
|
|
+DESC : std::string
|
|
|
|
+RAND : std::string
|
|
|
|
}
|
|
|
|
class "bayesnet::Boost" as C_0009819322948617116148
|
|
|
|
class C_0009819322948617116148 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+Boost(bool predict_voting = false) : void
|
|
|
|
+~Boost() = default : void
|
|
|
|
..
|
|
|
|
#buildModel(const torch::Tensor & weights) : void
|
|
|
|
#featureSelection(torch::Tensor & weights_) : std::vector<int>
|
|
|
|
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
|
|
|
#update_weights(torch::Tensor & ytrain, torch::Tensor & ypred, torch::Tensor & weights) : std::tuple<torch::Tensor &,double,bool>
|
|
|
|
#update_weights_block(int k, torch::Tensor & ytrain, torch::Tensor & weights) : std::tuple<torch::Tensor &,double,bool>
|
|
|
|
__
|
|
|
|
#X_test : torch::Tensor
|
|
|
|
#X_train : torch::Tensor
|
|
|
|
#bisection : bool
|
|
|
|
#block_update : bool
|
|
|
|
#convergence : bool
|
|
|
|
#convergence_best : bool
|
|
|
|
#featureSelector : FeatureSelect *
|
|
|
|
#maxTolerance : int
|
|
|
|
#order_algorithm : std::string
|
|
|
|
#selectFeatures : bool
|
|
|
|
#select_features_algorithm : std::string
|
|
|
|
#threshold : double
|
|
|
|
#y_test : torch::Tensor
|
|
|
|
#y_train : torch::Tensor
|
|
|
|
}
|
|
|
|
class "bayesnet::AODELd" as C_0003898187834670349177
|
|
|
|
class C_0003898187834670349177 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+AODELd(bool predict_voting = true) : void
|
|
|
|
+~AODELd() = default : void
|
|
|
|
..
|
|
|
|
#buildModel(const torch::Tensor & weights) : void
|
|
|
|
+fit(torch::Tensor & X_, torch::Tensor & y_, const std::vector<std::string> & features_, const std::string & className_, std::map<std::string,std::vector<int>> & states_, const Smoothing_t smoothing) : AODELd &
|
|
|
|
+graph(const std::string & name = "AODELd") const : std::vector<std::string>
|
|
|
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
|
|
|
__
|
|
|
|
}
|
|
|
|
class "bayesnet::(anonymous_60275628)" as C_0009086919615463763584
|
|
|
|
class C_0009086919615463763584 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
__
|
|
|
|
+CFS : std::string
|
|
|
|
+FCBF : std::string
|
|
|
|
+IWSS : std::string
|
|
|
|
}
|
|
|
|
class "bayesnet::(anonymous_60276282)" as C_0015251985607563196159
|
|
|
|
class C_0015251985607563196159 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
__
|
|
|
|
+ASC : std::string
|
|
|
|
+DESC : std::string
|
|
|
|
+RAND : std::string
|
|
|
|
}
|
|
|
|
class "bayesnet::BoostA2DE" as C_0000272055465257861326
|
|
|
|
class C_0000272055465257861326 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+BoostA2DE(bool predict_voting = false) : void
|
|
|
|
+~BoostA2DE() = default : void
|
|
|
|
..
|
|
|
|
+graph(const std::string & title = "BoostA2DE") const : std::vector<std::string>
|
|
|
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
|
|
|
__
|
|
|
|
}
|
|
|
|
class "bayesnet::(anonymous_60275502)" as C_0016033655851510053155
|
|
|
|
class C_0016033655851510053155 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
__
|
|
|
|
+CFS : std::string
|
|
|
|
+FCBF : std::string
|
|
|
|
+IWSS : std::string
|
|
|
|
}
|
|
|
|
class "bayesnet::(anonymous_60276156)" as C_0000379522761622473555
|
|
|
|
class C_0000379522761622473555 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
__
|
|
|
|
+ASC : std::string
|
|
|
|
+DESC : std::string
|
|
|
|
+RAND : std::string
|
|
|
|
}
|
|
|
|
class "bayesnet::BoostAODE" as C_0002867772739198819061
|
|
|
|
class C_0002867772739198819061 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
+BoostAODE(bool predict_voting = false) : void
|
|
|
|
+~BoostAODE() = default : void
|
|
|
|
..
|
|
|
|
+graph(const std::string & title = "BoostAODE") const : std::vector<std::string>
|
|
|
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
|
|
|
__
|
|
|
|
}
|
|
|
|
class "bayesnet::CFS" as C_0000093018845530739957
|
|
|
|
class C_0000093018845530739957 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+CFS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
|
|
|
+~CFS() : void
|
|
|
|
..
|
|
|
|
+fit() : void
|
|
|
|
__
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::FCBF" as C_0001157456122733975432
|
|
|
|
class C_0001157456122733975432 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+FCBF(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
|
|
|
+~FCBF() : void
|
|
|
|
..
|
|
|
|
+fit() : void
|
|
|
|
__
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::IWSS" as C_0000066148117395428429
|
|
|
|
class C_0000066148117395428429 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+IWSS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
|
|
|
+~IWSS() : void
|
|
|
|
..
|
|
|
|
+fit() : void
|
|
|
|
__
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::(anonymous_60730495)" as C_0004857727320042830573
|
|
|
|
class C_0004857727320042830573 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
__
|
2024-11-23 19:28:16 +00:00
|
|
|
+CFS : std::string
|
|
|
|
+FCBF : std::string
|
|
|
|
+IWSS : std::string
|
2024-04-19 12:33:00 +00:00
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::(anonymous_60731150)" as C_0000076541533312623385
|
|
|
|
class C_0000076541533312623385 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
__
|
2024-11-23 19:28:16 +00:00
|
|
|
+ASC : std::string
|
|
|
|
+DESC : std::string
|
|
|
|
+RAND : std::string
|
2024-04-19 12:33:00 +00:00
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::(anonymous_60653004)" as C_0001444063444142949758
|
|
|
|
class C_0001444063444142949758 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
__
|
|
|
|
+CFS : std::string
|
|
|
|
+FCBF : std::string
|
|
|
|
+IWSS : std::string
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::(anonymous_60653658)" as C_0007139277546931322856
|
|
|
|
class C_0007139277546931322856 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
__
|
|
|
|
+ASC : std::string
|
|
|
|
+DESC : std::string
|
|
|
|
+RAND : std::string
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::(anonymous_60731375)" as C_0010493853592456211189
|
|
|
|
class C_0010493853592456211189 #aliceblue;line:blue;line.dotted;text:blue {
|
|
|
|
__
|
|
|
|
+CFS : std::string
|
|
|
|
+FCBF : std::string
|
|
|
|
+IWSS : std::string
|
|
|
|
}
|
|
|
|
class "bayesnet::(anonymous_60732030)" as C_0007011438637915849564
|
|
|
|
class C_0007011438637915849564 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
__
|
2024-11-23 19:28:16 +00:00
|
|
|
+ASC : std::string
|
|
|
|
+DESC : std::string
|
|
|
|
+RAND : std::string
|
2024-04-19 12:33:00 +00:00
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::MST" as C_0001054867409378333602
|
|
|
|
class C_0001054867409378333602 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+MST() = default : void
|
|
|
|
+MST(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : void
|
|
|
|
..
|
2024-11-23 19:28:16 +00:00
|
|
|
+insertElement(std::list<int> & variables, int variable) : void
|
2024-04-19 12:33:00 +00:00
|
|
|
+maximumSpanningTree() : std::vector<std::pair<int,int>>
|
2024-11-23 19:28:16 +00:00
|
|
|
+reorder(std::vector<std::pair<float,std::pair<int,int>>> T, int root_original) : std::vector<std::pair<int,int>>
|
2024-04-19 12:33:00 +00:00
|
|
|
__
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
class "bayesnet::Graph" as C_0009576333456015187741
|
|
|
|
class C_0009576333456015187741 #aliceblue;line:blue;line.dotted;text:blue {
|
2024-04-19 12:33:00 +00:00
|
|
|
+Graph(int V) : void
|
|
|
|
..
|
|
|
|
+addEdge(int u, int v, float wt) : void
|
|
|
|
+find_set(int i) : int
|
|
|
|
+get_mst() : std::vector<std::pair<float,std::pair<int,int>>>
|
|
|
|
+kruskal_algorithm() : void
|
|
|
|
+union_set(int u, int v) : void
|
|
|
|
__
|
|
|
|
}
|
2024-11-23 19:28:16 +00:00
|
|
|
C_0010428199432536647474 --> C_0010428199432536647474 : -parents
|
|
|
|
C_0010428199432536647474 --> C_0010428199432536647474 : -children
|
|
|
|
C_0009493661199123436603 ..> C_0013393078277439680282
|
|
|
|
C_0009493661199123436603 o-- C_0010428199432536647474 : -nodes
|
|
|
|
C_0002617087915615796317 ..> C_0013393078277439680282
|
|
|
|
C_0002617087915615796317 ..> C_0005907365846270811004
|
|
|
|
C_0016351972983202413152 ..> C_0013393078277439680282
|
|
|
|
C_0016351972983202413152 o-- C_0009493661199123436603 : #model
|
|
|
|
C_0016351972983202413152 o-- C_0005895723015084986588 : #metrics
|
|
|
|
C_0016351972983202413152 o-- C_0005907365846270811004 : #status
|
|
|
|
C_0002617087915615796317 <|-- C_0016351972983202413152
|
|
|
|
|
|
|
|
C_0016351972983202413152 <|-- C_0008902920152122000044
|
|
|
|
|
|
|
|
C_0016351972983202413152 <|-- C_0004096182510460307610
|
|
|
|
|
|
|
|
C_0016351972983202413152 <|-- C_0016268916386101512883
|
|
|
|
|
|
|
|
C_0016351972983202413152 <|-- C_0014087955399074584137
|
|
|
|
|
|
|
|
C_0017759964713298103839 ..> C_0009493661199123436603
|
|
|
|
C_0002756018222998454702 ..> C_0013393078277439680282
|
|
|
|
C_0008902920152122000044 <|-- C_0002756018222998454702
|
|
|
|
|
|
|
|
C_0017759964713298103839 <|-- C_0002756018222998454702
|
|
|
|
|
|
|
|
C_0010957245114062042836 ..> C_0013393078277439680282
|
|
|
|
C_0004096182510460307610 <|-- C_0010957245114062042836
|
|
|
|
|
|
|
|
C_0017759964713298103839 <|-- C_0010957245114062042836
|
|
|
|
|
|
|
|
C_0013350632773616302678 ..> C_0013393078277439680282
|
|
|
|
C_0014087955399074584137 <|-- C_0013350632773616302678
|
|
|
|
|
|
|
|
C_0017759964713298103839 <|-- C_0013350632773616302678
|
|
|
|
|
|
|
|
C_0015881931090842884611 ..> C_0013393078277439680282
|
|
|
|
C_0015881931090842884611 o-- C_0016351972983202413152 : #models
|
|
|
|
C_0016351972983202413152 <|-- C_0015881931090842884611
|
|
|
|
|
|
|
|
C_0015881931090842884611 <|-- C_0001410789567057647859
|
|
|
|
|
|
|
|
C_0015881931090842884611 <|-- C_0006288892608974306258
|
|
|
|
|
|
|
|
C_0005895723015084986588 <|-- C_0013562609546004646591
|
|
|
|
|
|
|
|
C_0009819322948617116148 --> C_0013562609546004646591 : #featureSelector
|
|
|
|
C_0015881931090842884611 <|-- C_0009819322948617116148
|
|
|
|
|
|
|
|
C_0003898187834670349177 ..> C_0013393078277439680282
|
|
|
|
C_0015881931090842884611 <|-- C_0003898187834670349177
|
|
|
|
|
|
|
|
C_0017759964713298103839 <|-- C_0003898187834670349177
|
|
|
|
|
|
|
|
C_0000272055465257861326 ..> C_0013393078277439680282
|
|
|
|
C_0009819322948617116148 <|-- C_0000272055465257861326
|
|
|
|
|
|
|
|
C_0002867772739198819061 ..> C_0013393078277439680282
|
|
|
|
C_0009819322948617116148 <|-- C_0002867772739198819061
|
|
|
|
|
|
|
|
C_0013562609546004646591 <|-- C_0000093018845530739957
|
|
|
|
|
|
|
|
C_0013562609546004646591 <|-- C_0001157456122733975432
|
|
|
|
|
|
|
|
C_0013562609546004646591 <|-- C_0000066148117395428429
|
|
|
|
|
2024-04-19 12:33:00 +00:00
|
|
|
|
2024-11-23 19:28:16 +00:00
|
|
|
'Generated with clang-uml, version 0.5.5
|
|
|
|
'LLVM version clang version 18.1.8 (Fedora 18.1.8-5.fc41)
|
2024-04-19 12:33:00 +00:00
|
|
|
@enduml
|