BayesNet/html/bayesnet/ensembles/BoostAODE.h.gcov.html

127 lines
9.0 KiB
HTML
Raw Normal View History

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LCOV - coverage.info - bayesnet/ensembles/BoostAODE.h</title>
<link rel="stylesheet" type="text/css" href="../../gcov.css">
</head>
<body>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="title">LCOV - code coverage report</td></tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr>
<td width="100%">
<table cellpadding=1 border=0 width="100%">
<tr>
<td width="10%" class="headerItem">Current view:</td>
<td width="10%" class="headerValue"><a href="../../index.html">top level</a> - <a href="index.html">bayesnet/ensembles</a> - BoostAODE.h<span style="font-size: 80%;"> (source / <a href="BoostAODE.h.func-c.html">functions</a>)</span></td>
<td width="5%"></td>
<td width="5%"></td>
<td width="5%" class="headerCovTableHead">Coverage</td>
<td width="5%" class="headerCovTableHead" title="Covered + Uncovered code">Total</td>
<td width="5%" class="headerCovTableHead" title="Exercised code only">Hit</td>
</tr>
<tr>
<td class="headerItem">Test:</td>
<td class="headerValue">coverage.info</td>
<td></td>
<td class="headerItem">Lines:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr>
<td class="headerItem">Test Date:</td>
<td class="headerValue">2024-04-30 13:59:18</td>
<td></td>
<td class="headerItem">Functions:</td>
<td class="headerCovTableEntryHi">100.0&nbsp;%</td>
<td class="headerCovTableEntry">1</td>
<td class="headerCovTableEntry">1</td>
</tr>
<tr><td><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
</td>
</tr>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
</table>
<table cellpadding=0 cellspacing=0 border=0>
<tr>
<td><br></td>
</tr>
<tr>
<td>
<pre class="sourceHeading"> Line data Source code</pre>
<pre class="source">
<span id="L1"><span class="lineNum"> 1</span> : // ***************************************************************</span>
<span id="L2"><span class="lineNum"> 2</span> : // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez</span>
<span id="L3"><span class="lineNum"> 3</span> : // SPDX-FileType: SOURCE</span>
<span id="L4"><span class="lineNum"> 4</span> : // SPDX-License-Identifier: MIT</span>
<span id="L5"><span class="lineNum"> 5</span> : // ***************************************************************</span>
<span id="L6"><span class="lineNum"> 6</span> : </span>
<span id="L7"><span class="lineNum"> 7</span> : #ifndef BOOSTAODE_H</span>
<span id="L8"><span class="lineNum"> 8</span> : #define BOOSTAODE_H</span>
<span id="L9"><span class="lineNum"> 9</span> : #include &lt;map&gt;</span>
<span id="L10"><span class="lineNum"> 10</span> : #include &quot;bayesnet/classifiers/SPODE.h&quot;</span>
<span id="L11"><span class="lineNum"> 11</span> : #include &quot;bayesnet/feature_selection/FeatureSelect.h&quot;</span>
<span id="L12"><span class="lineNum"> 12</span> : #include &quot;Ensemble.h&quot;</span>
<span id="L13"><span class="lineNum"> 13</span> : namespace bayesnet {</span>
<span id="L14"><span class="lineNum"> 14</span> : const struct {</span>
<span id="L15"><span class="lineNum"> 15</span> : std::string CFS = &quot;CFS&quot;;</span>
<span id="L16"><span class="lineNum"> 16</span> : std::string FCBF = &quot;FCBF&quot;;</span>
<span id="L17"><span class="lineNum"> 17</span> : std::string IWSS = &quot;IWSS&quot;;</span>
<span id="L18"><span class="lineNum"> 18</span> : }SelectFeatures;</span>
<span id="L19"><span class="lineNum"> 19</span> : const struct {</span>
<span id="L20"><span class="lineNum"> 20</span> : std::string ASC = &quot;asc&quot;;</span>
<span id="L21"><span class="lineNum"> 21</span> : std::string DESC = &quot;desc&quot;;</span>
<span id="L22"><span class="lineNum"> 22</span> : std::string RAND = &quot;rand&quot;;</span>
<span id="L23"><span class="lineNum"> 23</span> : }Orders;</span>
<span id="L24"><span class="lineNum"> 24</span> : class BoostAODE : public Ensemble {</span>
<span id="L25"><span class="lineNum"> 25</span> : public:</span>
<span id="L26"><span class="lineNum"> 26</span> : explicit BoostAODE(bool predict_voting = false);</span>
<span id="L27"><span class="lineNum"> 27</span> <span class="tlaGNC tlaBgGNC"> 132 : virtual ~BoostAODE() = default;</span></span>
<span id="L28"><span class="lineNum"> 28</span> : std::vector&lt;std::string&gt; graph(const std::string&amp; title = &quot;BoostAODE&quot;) const override;</span>
<span id="L29"><span class="lineNum"> 29</span> : void setHyperparameters(const nlohmann::json&amp; hyperparameters_) override;</span>
<span id="L30"><span class="lineNum"> 30</span> : protected:</span>
<span id="L31"><span class="lineNum"> 31</span> : void buildModel(const torch::Tensor&amp; weights) override;</span>
<span id="L32"><span class="lineNum"> 32</span> : void trainModel(const torch::Tensor&amp; weights) override;</span>
<span id="L33"><span class="lineNum"> 33</span> : private:</span>
<span id="L34"><span class="lineNum"> 34</span> : std::tuple&lt;torch::Tensor&amp;, double, bool&gt; update_weights_block(int k, torch::Tensor&amp; ytrain, torch::Tensor&amp; weights);</span>
<span id="L35"><span class="lineNum"> 35</span> : std::vector&lt;int&gt; initializeModels();</span>
<span id="L36"><span class="lineNum"> 36</span> : torch::Tensor X_train, y_train, X_test, y_test;</span>
<span id="L37"><span class="lineNum"> 37</span> : // Hyperparameters</span>
<span id="L38"><span class="lineNum"> 38</span> : bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble</span>
<span id="L39"><span class="lineNum"> 39</span> : int maxTolerance = 3;</span>
<span id="L40"><span class="lineNum"> 40</span> : std::string order_algorithm; // order to process the KBest features asc, desc, rand</span>
<span id="L41"><span class="lineNum"> 41</span> : bool convergence = true; //if true, stop when the model does not improve</span>
<span id="L42"><span class="lineNum"> 42</span> : bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy</span>
<span id="L43"><span class="lineNum"> 43</span> : bool selectFeatures = false; // if true, use feature selection</span>
<span id="L44"><span class="lineNum"> 44</span> : std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm</span>
<span id="L45"><span class="lineNum"> 45</span> : FeatureSelect* featureSelector = nullptr;</span>
<span id="L46"><span class="lineNum"> 46</span> : double threshold = -1;</span>
<span id="L47"><span class="lineNum"> 47</span> : bool block_update = false;</span>
<span id="L48"><span class="lineNum"> 48</span> : };</span>
<span id="L49"><span class="lineNum"> 49</span> : }</span>
<span id="L50"><span class="lineNum"> 50</span> : #endif</span>
</pre>
</td>
</tr>
</table>
<br>
<table width="100%" border=0 cellspacing=0 cellpadding=0>
<tr><td class="ruler"><img src="../../glass.png" width=3 height=3 alt=""></td></tr>
<tr><td class="versionInfo">Generated by: <a href="https://github.com//linux-test-project/lcov" target="_parent">LCOV version 2.0-1</a></td></tr>
</table>
<br>
</body>
</html>