99 lines
3.7 KiB
C++
99 lines
3.7 KiB
C++
|
#include <catch2/catch_test_macros.hpp>
|
||
|
#include <catch2/catch_approx.hpp>
|
||
|
#include <catch2/generators/catch_generators.hpp>
|
||
|
#include "TestUtils.h"
|
||
|
#include "Folding.h"
|
||
|
|
||
|
TEST_CASE("KFold Test", "[KFold]")
|
||
|
{
|
||
|
// Initialize a KFold object with k=5 and a seed of 19.
|
||
|
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||
|
auto raw = RawDatasets(file_name, true);
|
||
|
int nFolds = 5;
|
||
|
platform::KFold kfold(nFolds, raw.nSamples, 19);s
|
||
|
int number = raw.nSamples * (kfold.getNumberOfFolds() - 1) / kfold.getNumberOfFolds();
|
||
|
|
||
|
SECTION("Number of Folds")
|
||
|
{
|
||
|
REQUIRE(kfold.getNumberOfFolds() == nFolds);
|
||
|
}
|
||
|
SECTION("Fold Test")
|
||
|
{
|
||
|
// Test each fold's size and contents.
|
||
|
for (int i = 0; i < nFolds; ++i) {
|
||
|
auto [train_indices, test_indices] = kfold.getFold(i);
|
||
|
bool result = train_indices.size() == number || train_indices.size() == number + 1;
|
||
|
REQUIRE(result);
|
||
|
REQUIRE(train_indices.size() + test_indices.size() == raw.nSamples);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
map<int, int> counts(vector<int> y, vector<int> indices)
|
||
|
{
|
||
|
map<int, int> result;
|
||
|
for (auto i = 0; i < indices.size(); ++i) {
|
||
|
result[y[indices[i]]]++;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
TEST_CASE("StratifiedKFold Test", "[StratifiedKFold]")
|
||
|
{
|
||
|
int nFolds = 3;
|
||
|
// Initialize a StratifiedKFold object with k=3, using the y vector, and a seed of 17.
|
||
|
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||
|
auto raw = RawDatasets(file_name, true);
|
||
|
platform::StratifiedKFold stratified_kfoldt(nFolds, raw.yt, 17);
|
||
|
platform::StratifiedKFold stratified_kfoldv(nFolds, raw.yv, 17);
|
||
|
int number = raw.nSamples * (stratified_kfold.getNumberOfFolds() - 1) / stratified_kfold.getNumberOfFolds();
|
||
|
|
||
|
// SECTION("Number of Folds")
|
||
|
// {
|
||
|
// REQUIRE(stratified_kfold.getNumberOfFolds() == nFolds);
|
||
|
// }
|
||
|
SECTION("Fold Test")
|
||
|
{
|
||
|
// Test each fold's size and contents.
|
||
|
auto counts = vector<int>(raw.classNumStates, 0);
|
||
|
for (int i = 0; i < nFolds; ++i) {
|
||
|
auto [train_indicest, test_indicest] = stratified_kfoldt.getFold(i);
|
||
|
auto [train_indicesv, test_indicesv] = stratified_kfoldv.getFold(i);
|
||
|
REQUIRE(train_indicest == train_indicesv);
|
||
|
REQUIRE(test_indicest == test_indicesv);
|
||
|
|
||
|
bool result = train_indices.size() == number || train_indices.size() == number + 1;
|
||
|
REQUIRE(result);
|
||
|
REQUIRE(train_indices.size() + test_indices.size() == raw.nSamples);
|
||
|
auto train_t = torch::tensor(train_indices);
|
||
|
auto ytrain = raw.yt.index({ train_t });
|
||
|
cout << "dataset=" << file_name << endl;
|
||
|
cout << "nSamples=" << raw.nSamples << endl;;
|
||
|
cout << "number=" << number << endl;
|
||
|
cout << "train_indices.size()=" << train_indices.size() << endl;
|
||
|
cout << "test_indices.size()=" << test_indices.size() << endl;
|
||
|
cout << "Class Name = " << raw.classNamet << endl;
|
||
|
cout << "Features = ";
|
||
|
for (const auto& item : raw.featurest) {
|
||
|
cout << item << ", ";
|
||
|
}
|
||
|
cout << endl;
|
||
|
cout << "Class States: ";
|
||
|
for (const auto& item : raw.statest.at(raw.classNamet)) {
|
||
|
cout << item << ", ";
|
||
|
}
|
||
|
cout << endl;
|
||
|
// Check that the class labels have been equally assign to each fold
|
||
|
for (const auto& idx : train_indices) {
|
||
|
counts[ytrain[idx].item<int>()]++;
|
||
|
}
|
||
|
int j = 0;
|
||
|
for (const auto& item : counts) {
|
||
|
cout << "j=" << j++ << item << endl;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
REQUIRE(1 == 1);
|
||
|
}
|
||
|
}
|