BayesNet/tests/TestUtils.cc

106 lines
4.1 KiB
C++
Raw Normal View History

#include "TestUtils.h"
2024-01-07 18:58:22 +00:00
#include "config.h"
class Paths {
public:
2023-11-08 17:45:35 +00:00
static std::string datasets()
{
2024-01-07 18:58:22 +00:00
return { data_path.begin(), data_path.end() };
}
};
2023-11-08 17:45:35 +00:00
pair<std::vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y, std::vector<std::string> features)
{
2023-11-08 17:45:35 +00:00
std::vector<mdlp::labels_t> Xd;
map<std::string, int> maxes;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
Xd.push_back(xd);
}
return { Xd, maxes };
}
2023-11-08 17:45:35 +00:00
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
2023-11-08 17:45:35 +00:00
std::vector<mdlp::labels_t> Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
Xd.push_back(xd);
}
return Xd;
}
2024-01-07 18:58:22 +00:00
bool file_exists(const std::string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file);
return true;
} else {
return false;
}
}
2024-01-07 18:58:22 +00:00
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last, bool discretize_dataset)
{
auto handler = ArffFiles();
2023-11-08 17:45:35 +00:00
handler.load(Paths::datasets() + static_cast<std::string>(name) + ".arff", class_last);
// Get Dataset X, y
2023-11-08 17:45:35 +00:00
std::vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
2023-11-08 17:45:35 +00:00
std::vector<std::string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
2023-11-08 17:45:35 +00:00
torch::Tensor Xd;
auto states = map<std::string, std::vector<int>>();
if (discretize_dataset) {
auto Xr = discretizeDataset(X, y);
2023-10-04 23:14:16 +00:00
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
2023-11-08 17:45:35 +00:00
states[features[i]] = std::vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
2023-10-04 23:14:16 +00:00
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
}
2023-11-08 17:45:35 +00:00
states[className] = std::vector<int>(*max_element(y.begin(), y.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
} else {
2023-10-04 23:14:16 +00:00
Xd = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kFloat32);
for (int i = 0; i < features.size(); ++i) {
2023-10-04 23:14:16 +00:00
Xd.index_put_({ i, "..." }, torch::tensor(X[i]));
}
}
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
}
2024-01-07 18:58:22 +00:00
tuple<std::vector<std::vector<int>>, std::vector<int>, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadFile(const std::string& name)
{
auto handler = ArffFiles();
2023-11-08 17:45:35 +00:00
handler.load(Paths::datasets() + static_cast<std::string>(name) + ".arff");
// Get Dataset X, y
2023-11-08 17:45:35 +00:00
std::vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
2023-11-08 17:45:35 +00:00
std::vector<std::string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
// Discretize Dataset
2023-11-08 17:45:35 +00:00
std::vector<mdlp::labels_t> Xd;
map<std::string, int> maxes;
tie(Xd, maxes) = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
2023-11-08 17:45:35 +00:00
map<std::string, std::vector<int>> states;
for (auto feature : features) {
2023-11-08 17:45:35 +00:00
states[feature] = std::vector<int>(maxes[feature]);
}
2023-11-08 17:45:35 +00:00
states[className] = std::vector<int>(maxes[className]);
return { Xd, y, features, className, states };
}