2024-05-15 17:49:15 +00:00
|
|
|
// ***************************************************************
|
|
|
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
|
|
// SPDX-FileType: SOURCE
|
|
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
// ***************************************************************
|
|
|
|
|
|
|
|
#ifndef BOOST_H
|
|
|
|
#define BOOST_H
|
|
|
|
#include <string>
|
|
|
|
#include <tuple>
|
|
|
|
#include <vector>
|
|
|
|
#include <nlohmann/json.hpp>
|
|
|
|
#include <torch/torch.h>
|
|
|
|
#include "Ensemble.h"
|
|
|
|
#include "bayesnet/feature_selection/FeatureSelect.h"
|
|
|
|
namespace bayesnet {
|
|
|
|
const struct {
|
|
|
|
std::string CFS = "CFS";
|
|
|
|
std::string FCBF = "FCBF";
|
|
|
|
std::string IWSS = "IWSS";
|
|
|
|
}SelectFeatures;
|
|
|
|
const struct {
|
|
|
|
std::string ASC = "asc";
|
|
|
|
std::string DESC = "desc";
|
|
|
|
std::string RAND = "rand";
|
|
|
|
}Orders;
|
|
|
|
class Boost : public Ensemble {
|
|
|
|
public:
|
|
|
|
explicit Boost(bool predict_voting = false);
|
|
|
|
virtual ~Boost() = default;
|
|
|
|
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
|
|
|
protected:
|
|
|
|
std::vector<int> featureSelection(torch::Tensor& weights_);
|
2024-05-15 18:00:44 +00:00
|
|
|
void buildModel(const torch::Tensor& weights) override;
|
2024-05-15 17:49:15 +00:00
|
|
|
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights);
|
|
|
|
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
|
|
|
|
torch::Tensor X_train, y_train, X_test, y_test;
|
|
|
|
// Hyperparameters
|
|
|
|
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
|
|
|
int maxTolerance = 3;
|
|
|
|
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
|
|
|
bool convergence = true; //if true, stop when the model does not improve
|
|
|
|
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
|
|
|
|
bool selectFeatures = false; // if true, use feature selection
|
|
|
|
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
|
|
|
FeatureSelect* featureSelector = nullptr;
|
|
|
|
double threshold = -1;
|
|
|
|
bool block_update = false;
|
|
|
|
|
|
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|