BayesNet/bayesnet/ensembles/BoostAODE.h

50 lines
2.2 KiB
C
Raw Permalink Normal View History

2024-04-11 16:02:49 +00:00
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
2023-08-15 14:16:04 +00:00
#ifndef BOOSTAODE_H
#define BOOSTAODE_H
2023-10-11 09:33:29 +00:00
#include <map>
2024-03-08 21:20:54 +00:00
#include "bayesnet/classifiers/SPODE.h"
#include "bayesnet/feature_selection/FeatureSelect.h"
#include "Ensemble.h"
2023-08-15 14:16:04 +00:00
namespace bayesnet {
const struct {
2024-04-02 07:52:40 +00:00
std::string CFS = "CFS";
std::string FCBF = "FCBF";
std::string IWSS = "IWSS";
}SelectFeatures;
const struct {
2024-04-02 07:52:40 +00:00
std::string ASC = "asc";
std::string DESC = "desc";
std::string RAND = "rand";
}Orders;
2023-08-15 14:16:04 +00:00
class BoostAODE : public Ensemble {
public:
explicit BoostAODE(bool predict_voting = false);
virtual ~BoostAODE() = default;
2023-11-08 17:45:35 +00:00
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights) override;
private:
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
std::vector<int> initializeModels();
torch::Tensor X_train, y_train, X_test, y_test;
2023-10-10 09:52:39 +00:00
// Hyperparameters
2024-04-08 21:36:05 +00:00
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
int maxTolerance = 3;
std::string order_algorithm; // order to process the KBest features asc, desc, rand
2024-04-08 21:36:05 +00:00
bool convergence = true; //if true, stop when the model does not improve
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
bool selectFeatures = false; // if true, use feature selection
2024-04-02 07:52:40 +00:00
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
FeatureSelect* featureSelector = nullptr;
double threshold = -1;
bool block_update = false;
2023-08-15 14:16:04 +00:00
};
}
#endif