Files
mdlp/tests/FImdlp_unittest.cpp

267 lines
9.0 KiB
C++

#include "gtest/gtest.h"
#include "../Metrics.h"
#include "../CPPFImdlp.h"
#include "ArffFiles.h"
#include <iostream>
namespace mdlp {
class TestFImdlp: public CPPFImdlp, public testing::Test {
public:
precision_t precision = 0.000001;
TestFImdlp(): CPPFImdlp() {}
void SetUp()
{
X = { 4.7, 4.7, 4.7, 4.7, 4.8, 4.8, 4.8, 4.8, 4.9, 4.95, 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
y = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
fit(X, y);
}
void checkSortedVector()
{
indices_t testSortedIndices = sortIndices(X, y);
precision_t prev = X[testSortedIndices[0]];
for (unsigned long i = 0; i < X.size(); ++i) {
EXPECT_EQ(testSortedIndices[i], indices[i]);
EXPECT_LE(prev, X[testSortedIndices[i]]);
prev = X[testSortedIndices[i]];
}
}
void checkCutPoints(cutPoints_t& computed, cutPoints_t& expected)
{
EXPECT_EQ(computed.size(), expected.size());
for (unsigned long i = 0; i < computed.size(); i++) {
EXPECT_NEAR(computed[i], expected[i], precision);
}
}
template<typename T, typename A>
void checkVectors(std::vector<T, A> const& expected, std::vector<T, A> const& computed)
{
ASSERT_EQ(expected.size(), computed.size());
for (auto i = 0; i < expected.size(); i++) {
EXPECT_NEAR(expected[i], computed[i], precision);
}
}
bool test_result(samples_t& X_, size_t cut, float midPoint, size_t limit, string title)
{
pair<precision_t, size_t> result;
labels_t y_ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
X = X_;
y = y_;
indices = sortIndices(X, y);
cout << "* " << title << endl;
result = valueCutPoint(0, cut, 10);
EXPECT_NEAR(result.first, midPoint, precision);
EXPECT_EQ(result.second, limit);
return true;
}
void test_dataset(CPPFImdlp& test, string filename, vector<cutPoints_t>& expected, int depths[])
{
ArffFiles file;
file.load("../datasets/" + filename + ".arff", true);
vector<samples_t>& X = file.getX();
labels_t& y = file.getY();
auto attributes = file.getAttributes();
for (auto feature = 0; feature < attributes.size(); feature++) {
test.fit(X[feature], y);
EXPECT_EQ(test.get_depth(), depths[feature]);
auto computed = test.getCutPoints();
cout << "Feature " << feature << ": ";
for (auto item : computed)
cout << item << " ";
cout << endl;
checkCutPoints(computed, expected[feature]);
}
}
};
TEST_F(TestFImdlp, FitErrorEmptyDataset)
{
X = samples_t();
y = labels_t();
EXPECT_THROW(fit(X, y), std::invalid_argument);
}
TEST_F(TestFImdlp, FitErrorDifferentSize)
{
X = { 1, 2, 3 };
y = { 1, 2 };
EXPECT_THROW(fit(X, y), std::invalid_argument);
}
TEST_F(TestFImdlp, FitErrorMinLengtMaxDepth)
{
auto testLength = CPPFImdlp(2, 10, 0);
auto testDepth = CPPFImdlp(3, 0, 0);
X = { 1, 2, 3 };
y = { 1, 2, 3 };
EXPECT_THROW(testLength.fit(X, y), invalid_argument);
EXPECT_THROW(testDepth.fit(X, y), invalid_argument);
}
TEST_F(TestFImdlp, FitErrorMaxCutPoints)
{
auto testmin = CPPFImdlp(2, 10, -1);
auto testmax = CPPFImdlp(3, 0, 200);
X = { 1, 2, 3 };
y = { 1, 2, 3 };
EXPECT_THROW(testmin.fit(X, y), invalid_argument);
EXPECT_THROW(testmax.fit(X, y), invalid_argument);
}
TEST_F(TestFImdlp, SortIndices)
{
X = { 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
indices = { 4, 3, 6, 8, 2, 1, 5, 0, 9, 7 };
checkSortedVector();
X = { 5.77, 5.88, 5.99 };
y = { 1, 2, 1 };
indices = { 0, 1, 2 };
checkSortedVector();
X = { 5.33, 5.22, 5.11 };
y = { 1, 2, 1 };
indices = { 2, 1, 0 };
checkSortedVector();
X = { 5.33, 5.22, 5.33 };
y = { 2, 2, 1 };
indices = { 1, 2, 0 };
}
TEST_F(TestFImdlp, TestShortDatasets)
{
vector<precision_t> computed;
X = { 1 };
y = { 1 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 0);
X = { 1, 3 };
y = { 1, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 0);
X = { 2, 4 };
y = { 1, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 0);
X = { 1, 2, 3 };
y = { 1, 2, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 1);
EXPECT_NEAR(computed[0], 1.5, precision);
}
TEST_F(TestFImdlp, TestArtificialDataset)
{
fit(X, y);
cutPoints_t expected = { 5.05 };
vector<precision_t> computed = getCutPoints();
int expectedSize = expected.size();
EXPECT_EQ(computed.size(), expected.size());
for (unsigned long i = 0; i < computed.size(); i++) {
EXPECT_NEAR(computed[i], expected[i], precision);
}
}
TEST_F(TestFImdlp, TestIris)
{
vector<cutPoints_t> expected = {
{ 5.45, 5.75 },
{ 2.75, 2.85, 2.95, 3.05, 3.35 },
{ 2.45, 4.75, 5.05 },
{ 0.8, 1.75 }
};
int depths[] = { 3, 5, 5, 5 };
auto test = CPPFImdlp();
//test_dataset(test, "iris.arff", expected, depths);
}
TEST_F(TestFImdlp, ComputeCutPointsGCase)
{
cutPoints_t expected;
expected = { 1.5 };
samples_t X_ = { 0, 1, 2, 2, 2 };
labels_t y_ = { 1, 1, 1, 2, 2 };
fit(X_, y_);
auto computed = getCutPoints();
checkCutPoints(computed, expected);
}
TEST_F(TestFImdlp, ValueCutPoint)
{
// Case titles as stated in the doc
samples_t X1a{ 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0 };
test_result(X1a, 6, 7.3 / 2, 6, "1a");
samples_t X2a = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
test_result(X2a, 6, 7.1 / 2, 4, "2a");
samples_t X2b = { 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
test_result(X2b, 6, 7.5 / 2, 7, "2b");
samples_t X3a = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
test_result(X3a, 4, 7.1 / 2, 4, "3a");
samples_t X3b = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7 };
test_result(X3b, 4, 7.1 / 2, 4, "3b");
samples_t X4a = { 3.1, 3.2, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.9, 4.0 };
test_result(X4a, 4, 6.9 / 2, 2, "4a");
samples_t X4b = { 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
test_result(X4b, 4, 7.5 / 2, 7, "4b");
samples_t X4c = { 3.1, 3.2, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7 };
test_result(X4c, 4, 6.9 / 2, 2, "4c");
}
TEST_F(TestFImdlp, MaxDepth)
{
// Set max_depth to 1
auto test = CPPFImdlp(3, 1, 0);
vector<cutPoints_t> expected = {
{ 5.45 },
{ 3.35 },
{ 2.45 },
{0.8 }
};
int depths[] = { 1, 1, 1, 1 };
test_dataset(test, "iris", expected, depths);
}
TEST_F(TestFImdlp, MinLength)
{
auto test = CPPFImdlp(75, 100, 0);
// Set min_length to 75
vector<cutPoints_t> expected = {
{ 5.45, 5.75 },
{ 2.85, 3.35 },
{ 2.45, 4.75 },
{ 0.8, 1.75 }
};
int depths[] = { 3, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
}
TEST_F(TestFImdlp, MinLengthMaxDepth)
{
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 0);
vector<cutPoints_t> expected = {
{ 5.45, 5.75 },
{ 2.85, 3.35 },
{ 2.45, 4.75 },
{ 0.8, 1.75 }
};
int depths[] = { 2, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
}
TEST_F(TestFImdlp, MaxCutPointsInteger)
{
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 1);
vector<cutPoints_t> expected = {
{ 5.45 },
{ 3.35 },
{ 2.45 },
{ 0.8}
};
int depths[] = { 1, 1, 1, 1 };
test_dataset(test, "iris", expected, depths);
}
TEST_F(TestFImdlp, MaxCutPointsFloat)
{
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 0.2);
vector<cutPoints_t> expected = {
{ 5.45, 5.75 },
{ 2.85, 3.35 },
{ 2.45, 4.75 },
{ 0.8, 1.75 }
};
int depths[] = { 2, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
}
}