mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-15 23:45:57 +00:00
138 lines
4.3 KiB
C++
138 lines
4.3 KiB
C++
#include "gtest/gtest.h"
|
|
#include "../Metrics.h"
|
|
#include "../CPPFImdlp.h"
|
|
#include <iostream>
|
|
|
|
namespace mdlp {
|
|
class TestFImdlp: public CPPFImdlp, public testing::Test {
|
|
public:
|
|
precision_t precision = 0.000001;
|
|
TestFImdlp(): CPPFImdlp() {}
|
|
void SetUp()
|
|
{
|
|
// 5.0, 5.1, 5.1, 5.1, 5.2, 5.3, 5.6, 5.7, 5.9, 6.0]
|
|
//(5.0, 1) (5.1, 1) (5.1, 2) (5.1, 2) (5.2, 1) (5.3, 1) (5.6, 2) (5.7, 1) (5.9, 2) (6.0, 2)
|
|
X = { 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
|
|
y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
|
algorithm = false;
|
|
fit(X, y);
|
|
}
|
|
void setalgorithm(bool value)
|
|
{
|
|
algorithm = value;
|
|
}
|
|
void checkSortedVector()
|
|
{
|
|
indices_t testSortedIndices = sortIndices(X, y);
|
|
precision_t prev = X[testSortedIndices[0]];
|
|
for (auto i = 0; i < X.size(); ++i) {
|
|
EXPECT_EQ(testSortedIndices[i], indices[i]);
|
|
EXPECT_LE(prev, X[testSortedIndices[i]]);
|
|
prev = X[testSortedIndices[i]];
|
|
}
|
|
}
|
|
void checkCutPoints(cutPoints_t& expected)
|
|
{
|
|
int expectedSize = expected.size();
|
|
EXPECT_EQ(cutPoints.size(), expectedSize);
|
|
for (auto i = 0; i < cutPoints.size(); i++) {
|
|
EXPECT_NEAR(cutPoints[i], expected[i], precision);
|
|
}
|
|
}
|
|
template<typename T, typename A>
|
|
void checkVectors(std::vector<T, A> const& expected, std::vector<T, A> const& computed)
|
|
{
|
|
EXPECT_EQ(expected.size(), computed.size());
|
|
ASSERT_EQ(expected.size(), computed.size());
|
|
for (auto i = 0; i < expected.size(); i++) {
|
|
EXPECT_NEAR(expected[i], computed[i], precision);
|
|
}
|
|
}
|
|
};
|
|
TEST_F(TestFImdlp, FitErrorEmptyDataset)
|
|
{
|
|
X = samples_t();
|
|
y = labels_t();
|
|
EXPECT_THROW(fit(X, y), std::invalid_argument);
|
|
}
|
|
TEST_F(TestFImdlp, FitErrorDifferentSize)
|
|
{
|
|
X = { 1, 2, 3 };
|
|
y = { 1, 2 };
|
|
EXPECT_THROW(fit(X, y), std::invalid_argument);
|
|
}
|
|
TEST_F(TestFImdlp, SortIndices)
|
|
{
|
|
X = { 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
|
|
indices = { 4, 3, 6, 8, 2, 1, 5, 0, 9, 7 };
|
|
checkSortedVector();
|
|
X = { 5.77, 5.88, 5.99 };
|
|
indices = { 0, 1, 2 };
|
|
checkSortedVector();
|
|
X = { 5.33, 5.22, 5.11 };
|
|
indices = { 2, 1, 0 };
|
|
checkSortedVector();
|
|
}
|
|
|
|
TEST_F(TestFImdlp, TestDataset)
|
|
{
|
|
algorithm = 0;
|
|
fit(X, y);
|
|
computeCutPoints(0, 10);
|
|
cutPoints_t expected = { 5.6499996185302734 };
|
|
vector<precision_t> computed = getCutPoints();
|
|
computed = getCutPoints();
|
|
int expectedSize = expected.size();
|
|
EXPECT_EQ(computed.size(), expected.size());
|
|
for (auto i = 0; i < expectedSize; i++) {
|
|
EXPECT_NEAR(computed[i], expected[i], precision);
|
|
}
|
|
}
|
|
TEST_F(TestFImdlp, ComputeCutPoints)
|
|
{
|
|
cutPoints_t expected = { 5.65 };
|
|
algorithm = false;
|
|
computeCutPoints(0, 10);
|
|
checkCutPoints(expected);
|
|
}
|
|
TEST_F(TestFImdlp, ComputeCutPointsGCase)
|
|
{
|
|
cutPoints_t expected;
|
|
algorithm = false;
|
|
expected = { 2 };
|
|
samples_t X_ = { 0, 1, 2, 2 };
|
|
labels_t y_ = { 1, 1, 1, 2 };
|
|
fit(X_, y_);
|
|
checkCutPoints(expected);
|
|
}
|
|
TEST_F(TestFImdlp, ComputeCutPointsalAlternative)
|
|
{
|
|
algorithm = true;
|
|
cutPoints_t expected;
|
|
expected = {};
|
|
fit(X, y);
|
|
computeCutPointsAlternative(0, 10);
|
|
checkCutPoints(expected);
|
|
}
|
|
TEST_F(TestFImdlp, ComputeCutPointsAlternativeGCase)
|
|
{
|
|
cutPoints_t expected;
|
|
expected = { 1.5 };
|
|
algorithm = true;
|
|
samples_t X_ = { 0, 1, 2, 2 };
|
|
labels_t y_ = { 1, 1, 1, 2 };
|
|
fit(X_, y_);
|
|
checkCutPoints(expected);
|
|
}
|
|
TEST_F(TestFImdlp, GetCutPoints)
|
|
{
|
|
samples_t computed, expected = { 5.65 };
|
|
algorithm = false;
|
|
computeCutPoints(0, 10);
|
|
computed = getCutPoints();
|
|
for (auto item : cutPoints)
|
|
cout << setprecision(6) << item << endl;
|
|
checkVectors(expected, computed);
|
|
}
|
|
}
|