mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-15 23:45:57 +00:00
Add some type casting to CPPFImdlp Add additional path to datasets in tests Fix some smells in sample Join CMakeLists
298 lines
10 KiB
C++
298 lines
10 KiB
C++
#include "gtest/gtest.h"
|
|
#include "../Metrics.h"
|
|
#include "../CPPFImdlp.h"
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include "ArffFiles.h"
|
|
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
|
|
try { \
|
|
stmt; \
|
|
} catch (const etype& ex) { \
|
|
EXPECT_EQ(whatstring, std::string(ex.what())); \
|
|
throw; \
|
|
} \
|
|
, etype)
|
|
|
|
namespace mdlp {
|
|
class TestFImdlp: public CPPFImdlp, public testing::Test {
|
|
public:
|
|
precision_t precision = 0.000001;
|
|
TestFImdlp(): CPPFImdlp() {}
|
|
string data_path;
|
|
void SetUp()
|
|
{
|
|
X = { 4.7, 4.7, 4.7, 4.7, 4.8, 4.8, 4.8, 4.8, 4.9, 4.95, 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
|
|
y = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
|
fit(X, y);
|
|
data_path = set_data_path();
|
|
}
|
|
string set_data_path()
|
|
{
|
|
string path = "../datasets/";
|
|
ifstream file(path+"iris.arff");
|
|
if (file.is_open()) {
|
|
file.close();
|
|
return path;
|
|
}
|
|
return "../../tests/datasets/";
|
|
}
|
|
void checkSortedVector()
|
|
{
|
|
indices_t testSortedIndices = sortIndices(X, y);
|
|
precision_t prev = X[testSortedIndices[0]];
|
|
for (unsigned long i = 0; i < X.size(); ++i) {
|
|
EXPECT_EQ(testSortedIndices[i], indices[i]);
|
|
EXPECT_LE(prev, X[testSortedIndices[i]]);
|
|
prev = X[testSortedIndices[i]];
|
|
}
|
|
}
|
|
void checkCutPoints(cutPoints_t& computed, cutPoints_t& expected)
|
|
{
|
|
EXPECT_EQ(computed.size(), expected.size());
|
|
for (unsigned long i = 0; i < computed.size(); i++) {
|
|
cout << "(" << computed[i] << ", " << expected[i] << ") ";
|
|
EXPECT_NEAR(computed[i], expected[i], precision);
|
|
}
|
|
}
|
|
template<typename T, typename A>
|
|
void checkVectors(std::vector<T, A> const& expected, std::vector<T, A> const& computed)
|
|
{
|
|
ASSERT_EQ(expected.size(), computed.size());
|
|
for (auto i = 0; i < expected.size(); i++) {
|
|
EXPECT_NEAR(expected[i], computed[i], precision);
|
|
}
|
|
}
|
|
bool test_result(samples_t& X_, size_t cut, float midPoint, size_t limit, string title)
|
|
{
|
|
pair<precision_t, size_t> result;
|
|
labels_t y_ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
|
X = X_;
|
|
y = y_;
|
|
indices = sortIndices(X, y);
|
|
cout << "* " << title << endl;
|
|
result = valueCutPoint(0, cut, 10);
|
|
EXPECT_NEAR(result.first, midPoint, precision);
|
|
EXPECT_EQ(result.second, limit);
|
|
return true;
|
|
}
|
|
void test_dataset(CPPFImdlp& test, string filename, vector<cutPoints_t>& expected, int depths[])
|
|
{
|
|
ArffFiles file;
|
|
file.load(data_path + filename + ".arff", true);
|
|
vector<samples_t>& X = file.getX();
|
|
labels_t& y = file.getY();
|
|
auto attributes = file.getAttributes();
|
|
for (auto feature = 0; feature < attributes.size(); feature++) {
|
|
test.fit(X[feature], y);
|
|
EXPECT_EQ(test.get_depth(), depths[feature]);
|
|
auto computed = test.getCutPoints();
|
|
cout << "Feature " << feature << ": ";
|
|
checkCutPoints(computed, expected[feature]);
|
|
cout << endl;
|
|
}
|
|
}
|
|
};
|
|
TEST_F(TestFImdlp, FitErrorEmptyDataset)
|
|
{
|
|
X = samples_t();
|
|
y = labels_t();
|
|
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have at least one element");
|
|
}
|
|
TEST_F(TestFImdlp, FitErrorDifferentSize)
|
|
{
|
|
X = { 1, 2, 3 };
|
|
y = { 1, 2 };
|
|
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have the same size");
|
|
}
|
|
TEST_F(TestFImdlp, FitErrorMinLengtMaxDepth)
|
|
{
|
|
auto testLength = CPPFImdlp(2, 10, 0);
|
|
auto testDepth = CPPFImdlp(3, 0, 0);
|
|
X = { 1, 2, 3 };
|
|
y = { 1, 2, 3 };
|
|
EXPECT_THROW_WITH_MESSAGE(testLength.fit(X, y), invalid_argument, "min_length must be greater than 2");
|
|
EXPECT_THROW_WITH_MESSAGE(testDepth.fit(X, y), invalid_argument, "max_depth must be greater than 0");
|
|
}
|
|
TEST_F(TestFImdlp, FitErrorMaxCutPoints)
|
|
{
|
|
auto testmin = CPPFImdlp(2, 10, -1);
|
|
auto testmax = CPPFImdlp(3, 0, 200);
|
|
X = { 1, 2, 3 };
|
|
y = { 1, 2, 3 };
|
|
EXPECT_THROW_WITH_MESSAGE(testmin.fit(X, y), invalid_argument, "wrong proposed num_cuts value");
|
|
EXPECT_THROW_WITH_MESSAGE(testmax.fit(X, y), invalid_argument, "wrong proposed num_cuts value");
|
|
}
|
|
TEST_F(TestFImdlp, SortIndices)
|
|
{
|
|
X = { 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
|
|
y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
|
indices = { 4, 3, 6, 8, 2, 1, 5, 0, 9, 7 };
|
|
checkSortedVector();
|
|
X = { 5.77, 5.88, 5.99 };
|
|
y = { 1, 2, 1 };
|
|
indices = { 0, 1, 2 };
|
|
checkSortedVector();
|
|
X = { 5.33, 5.22, 5.11 };
|
|
y = { 1, 2, 1 };
|
|
indices = { 2, 1, 0 };
|
|
checkSortedVector();
|
|
X = { 5.33, 5.22, 5.33 };
|
|
y = { 2, 2, 1 };
|
|
indices = { 1, 2, 0 };
|
|
}
|
|
TEST_F(TestFImdlp, TestShortDatasets)
|
|
{
|
|
vector<precision_t> computed;
|
|
X = { 1 };
|
|
y = { 1 };
|
|
fit(X, y);
|
|
computed = getCutPoints();
|
|
EXPECT_EQ(computed.size(), 0);
|
|
X = { 1, 3 };
|
|
y = { 1, 2 };
|
|
fit(X, y);
|
|
computed = getCutPoints();
|
|
EXPECT_EQ(computed.size(), 0);
|
|
X = { 2, 4 };
|
|
y = { 1, 2 };
|
|
fit(X, y);
|
|
computed = getCutPoints();
|
|
EXPECT_EQ(computed.size(), 0);
|
|
X = { 1, 2, 3 };
|
|
y = { 1, 2, 2 };
|
|
fit(X, y);
|
|
computed = getCutPoints();
|
|
EXPECT_EQ(computed.size(), 1);
|
|
EXPECT_NEAR(computed[0], 1.5, precision);
|
|
}
|
|
TEST_F(TestFImdlp, TestArtificialDataset)
|
|
{
|
|
fit(X, y);
|
|
cutPoints_t expected = { 5.05 };
|
|
vector<precision_t> computed = getCutPoints();
|
|
int expectedSize = expected.size();
|
|
EXPECT_EQ(computed.size(), expected.size());
|
|
for (unsigned long i = 0; i < computed.size(); i++) {
|
|
EXPECT_NEAR(computed[i], expected[i], precision);
|
|
}
|
|
}
|
|
TEST_F(TestFImdlp, TestIris)
|
|
{
|
|
vector<cutPoints_t> expected = {
|
|
{ 5.45, 5.75 },
|
|
{ 2.75, 2.85, 2.95, 3.05, 3.35 },
|
|
{ 2.45, 4.75, 5.05 },
|
|
{ 0.8, 1.75 }
|
|
};
|
|
int depths[] = { 3, 5, 5, 5 };
|
|
auto test = CPPFImdlp();
|
|
//test_dataset(test, "iris.arff", expected, depths);
|
|
}
|
|
TEST_F(TestFImdlp, ComputeCutPointsGCase)
|
|
{
|
|
cutPoints_t expected;
|
|
expected = { 1.5 };
|
|
samples_t X_ = { 0, 1, 2, 2, 2 };
|
|
labels_t y_ = { 1, 1, 1, 2, 2 };
|
|
fit(X_, y_);
|
|
auto computed = getCutPoints();
|
|
checkCutPoints(computed, expected);
|
|
}
|
|
TEST_F(TestFImdlp, ValueCutPoint)
|
|
{
|
|
// Case titles as stated in the doc
|
|
samples_t X1a{ 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0 };
|
|
test_result(X1a, 6, 7.3 / 2, 6, "1a");
|
|
samples_t X2a = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
|
test_result(X2a, 6, 7.1 / 2, 4, "2a");
|
|
samples_t X2b = { 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
|
test_result(X2b, 6, 7.5 / 2, 7, "2b");
|
|
samples_t X3a = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
|
test_result(X3a, 4, 7.1 / 2, 4, "3a");
|
|
samples_t X3b = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7 };
|
|
test_result(X3b, 4, 7.1 / 2, 4, "3b");
|
|
samples_t X4a = { 3.1, 3.2, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.9, 4.0 };
|
|
test_result(X4a, 4, 6.9 / 2, 2, "4a");
|
|
samples_t X4b = { 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
|
test_result(X4b, 4, 7.5 / 2, 7, "4b");
|
|
samples_t X4c = { 3.1, 3.2, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7 };
|
|
test_result(X4c, 4, 6.9 / 2, 2, "4c");
|
|
}
|
|
TEST_F(TestFImdlp, MaxDepth)
|
|
{
|
|
// Set max_depth to 1
|
|
auto test = CPPFImdlp(3, 1, 0);
|
|
vector<cutPoints_t> expected = {
|
|
{ 5.45 },
|
|
{ 3.35 },
|
|
{ 2.45 },
|
|
{0.8 }
|
|
};
|
|
int depths[] = { 1, 1, 1, 1 };
|
|
test_dataset(test, "iris", expected, depths);
|
|
}
|
|
TEST_F(TestFImdlp, MinLength)
|
|
{
|
|
auto test = CPPFImdlp(75, 100, 0);
|
|
// Set min_length to 75
|
|
vector<cutPoints_t> expected = {
|
|
{ 5.45, 5.75 },
|
|
{ 2.85, 3.35 },
|
|
{ 2.45, 4.75 },
|
|
{ 0.8, 1.75 }
|
|
};
|
|
int depths[] = { 3, 2, 2, 2 };
|
|
test_dataset(test, "iris", expected, depths);
|
|
}
|
|
TEST_F(TestFImdlp, MinLengthMaxDepth)
|
|
{
|
|
// Set min_length to 75
|
|
auto test = CPPFImdlp(75, 2, 0);
|
|
vector<cutPoints_t> expected = {
|
|
{ 5.45, 5.75 },
|
|
{ 2.85, 3.35 },
|
|
{ 2.45, 4.75 },
|
|
{ 0.8, 1.75 }
|
|
};
|
|
int depths[] = { 2, 2, 2, 2 };
|
|
test_dataset(test, "iris", expected, depths);
|
|
}
|
|
TEST_F(TestFImdlp, MaxCutPointsInteger)
|
|
{
|
|
// Set min_length to 75
|
|
auto test = CPPFImdlp(75, 2, 1);
|
|
vector<cutPoints_t> expected = {
|
|
{ 5.45 },
|
|
{ 3.35 },
|
|
{ 2.45 },
|
|
{ 0.8}
|
|
};
|
|
int depths[] = { 1, 1, 1, 1 };
|
|
test_dataset(test, "iris", expected, depths);
|
|
}
|
|
TEST_F(TestFImdlp, MaxCutPointsFloat)
|
|
{
|
|
// Set min_length to 75
|
|
auto test = CPPFImdlp(75, 2, 0.2);
|
|
vector<cutPoints_t> expected = {
|
|
{ 5.45, 5.75 },
|
|
{ 2.85, 3.35 },
|
|
{ 2.45, 4.75 },
|
|
{ 0.8, 1.75 }
|
|
};
|
|
int depths[] = { 2, 2, 2, 2 };
|
|
test_dataset(test, "iris", expected, depths);
|
|
}
|
|
TEST_F(TestFImdlp, ProposedCuts)
|
|
{
|
|
vector<pair<float, size_t>> proposed_list = { { 0.1, 2}, { 0.5, 10}, {0.07, 1}, {1, 1}, {2, 2} };
|
|
size_t expected, computed;
|
|
for (auto proposed_item : proposed_list) {
|
|
tie(proposed_cuts, expected) = proposed_item;
|
|
computed = compute_max_num_cut_points();
|
|
ASSERT_EQ(expected, computed);
|
|
}
|
|
|
|
}
|
|
}
|