mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-16 07:55:58 +00:00
162 lines
5.7 KiB
C++
162 lines
5.7 KiB
C++
#include <numeric>
|
|
#include <algorithm>
|
|
#include <set>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include "CPPFImdlp.h"
|
|
#include "Metrics.h"
|
|
|
|
namespace mdlp {
|
|
|
|
CPPFImdlp::CPPFImdlp(): indices(indices_t()), X(samples_t()), y(labels_t()),
|
|
metrics(Metrics(y, indices))
|
|
{
|
|
}
|
|
CPPFImdlp::~CPPFImdlp() = default;
|
|
|
|
CPPFImdlp& CPPFImdlp::fit(samples_t& X_, labels_t& y_)
|
|
{
|
|
X = X_;
|
|
y = y_;
|
|
cutPoints.clear();
|
|
if (X.size() != y.size()) {
|
|
throw invalid_argument("X and y must have the same size");
|
|
}
|
|
if (X.empty() || y.empty()) {
|
|
throw invalid_argument("X and y must have at least one element");
|
|
}
|
|
indices = sortIndices(X_, y_);
|
|
metrics.setData(y, indices);
|
|
computeCutPoints(0, X.size());
|
|
return *this;
|
|
}
|
|
|
|
pair<precision_t, size_t> CPPFImdlp::valueCutPoint(size_t start, size_t cut, size_t end)
|
|
{
|
|
size_t n, m, idxPrev = cut - 1 >= start ? cut - 1 : cut;
|
|
size_t idxNext = cut + 1 < end ? cut + 1 : cut;
|
|
bool backWall; // true if duplicates reach begining of the interval
|
|
precision_t previous, actual, next;
|
|
previous = X[indices[idxPrev]];
|
|
actual = X[indices[cut]];
|
|
next = X[indices[idxNext]];
|
|
// definition 2 of the paper => X[t-1] < X[t]
|
|
// get the first equal value of X in the interval
|
|
while (idxPrev > start && actual == previous) {
|
|
previous = X[indices[--idxPrev]];
|
|
}
|
|
backWall = idxPrev == start && actual == previous;
|
|
// get the last equal value of X in the interval
|
|
while (idxNext < end - 1 && actual == next) {
|
|
next = X[indices[++idxNext]];
|
|
}
|
|
// # of duplicates before cutpoint
|
|
n = cut - 1 - idxPrev;
|
|
// # of duplicates after cutpoint
|
|
m = idxNext - cut - 1;
|
|
// Decide which values to use
|
|
cut = cut + (backWall ? m + 1 : -n);
|
|
actual = X[indices[cut]];
|
|
return { (actual + previous) / 2, cut };
|
|
}
|
|
|
|
void CPPFImdlp::computeCutPoints(size_t start, size_t end)
|
|
{
|
|
size_t cut;
|
|
pair<precision_t, size_t> result;
|
|
if (end - start < 3)
|
|
return;
|
|
cut = getCandidate(start, end);
|
|
if (cut == numeric_limits<size_t>::max())
|
|
return;
|
|
if (mdlp(start, cut, end)) {
|
|
result = valueCutPoint(start, cut, end);
|
|
cut = result.second;
|
|
cutPoints.push_back(result.first);
|
|
computeCutPoints(start, cut);
|
|
computeCutPoints(cut, end);
|
|
}
|
|
}
|
|
|
|
size_t CPPFImdlp::getCandidate(size_t start, size_t end)
|
|
{
|
|
/* Definition 1: A binary discretization for A is determined by selecting the cut point TA for which
|
|
E(A, TA; S) is minimal amongst all the candidate cut points. */
|
|
size_t candidate = numeric_limits<size_t>::max(), elements = end - start;
|
|
bool sameValues = true;
|
|
precision_t entropy_left, entropy_right, minEntropy;
|
|
// Check if all the values of the variable in the interval are the same
|
|
for (size_t idx = start + 1; idx < end; idx++) {
|
|
if (X[indices[idx]] != X[indices[start]]) {
|
|
sameValues = false;
|
|
break;
|
|
}
|
|
}
|
|
if (sameValues)
|
|
return candidate;
|
|
minEntropy = metrics.entropy(start, end);
|
|
for (size_t idx = start + 1; idx < end; idx++) {
|
|
// Cutpoints are always on boundaries (definition 2)
|
|
if (y[indices[idx]] == y[indices[idx - 1]])
|
|
continue;
|
|
entropy_left = precision_t(idx - start) / elements * metrics.entropy(start, idx);
|
|
entropy_right = precision_t(end - idx) / elements * metrics.entropy(idx, end);
|
|
if (entropy_left + entropy_right < minEntropy) {
|
|
minEntropy = entropy_left + entropy_right;
|
|
candidate = idx;
|
|
}
|
|
}
|
|
return candidate;
|
|
}
|
|
|
|
bool CPPFImdlp::mdlp(size_t start, size_t cut, size_t end)
|
|
{
|
|
int k, k1, k2;
|
|
precision_t ig, delta;
|
|
precision_t ent, ent1, ent2;
|
|
auto N = precision_t(end - start);
|
|
if (N < 2) {
|
|
return false;
|
|
}
|
|
k = metrics.computeNumClasses(start, end);
|
|
k1 = metrics.computeNumClasses(start, cut);
|
|
k2 = metrics.computeNumClasses(cut, end);
|
|
ent = metrics.entropy(start, end);
|
|
ent1 = metrics.entropy(start, cut);
|
|
ent2 = metrics.entropy(cut, end);
|
|
ig = metrics.informationGain(start, cut, end);
|
|
delta = log2(pow(3, precision_t(k)) - 2) -
|
|
(precision_t(k) * ent - precision_t(k1) * ent1 - precision_t(k2) * ent2);
|
|
precision_t term = 1 / N * (log2(N - 1) + delta);
|
|
return ig > term;
|
|
}
|
|
|
|
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
|
|
indices_t CPPFImdlp::sortIndices(samples_t& X_, labels_t& y_)
|
|
{
|
|
indices_t idx(X_.size());
|
|
iota(idx.begin(), idx.end(), 0);
|
|
for (size_t i = 0; i < X_.size(); i++)
|
|
stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2) {
|
|
if (X_[i1] == X_[i2])
|
|
return y_[i1] < y_[i2];
|
|
else
|
|
return X_[i1] < X_[i2];
|
|
});
|
|
return idx;
|
|
}
|
|
|
|
cutPoints_t CPPFImdlp::getCutPoints()
|
|
{
|
|
// Remove duplicates and sort
|
|
cutPoints_t output(cutPoints.size());
|
|
set<precision_t> s;
|
|
unsigned size = cutPoints.size();
|
|
for (unsigned i = 0; i < size; i++)
|
|
s.insert(cutPoints[i]);
|
|
output.assign(s.begin(), s.end());
|
|
sort(output.begin(), output.end());
|
|
return output;
|
|
}
|
|
}
|