mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-16 07:55:58 +00:00
161 lines
5.7 KiB
C++
161 lines
5.7 KiB
C++
#include <numeric>
|
|
#include <algorithm>
|
|
#include <set>
|
|
#include <cmath>
|
|
#include "CPPFImdlp.h"
|
|
#include "Metrics.h"
|
|
|
|
namespace mdlp {
|
|
CPPFImdlp::CPPFImdlp(bool proposal):proposal(proposal), indices(indices_t()), X(samples_t()), y(labels_t()), metrics(Metrics(y, indices))
|
|
{
|
|
}
|
|
CPPFImdlp::~CPPFImdlp()
|
|
= default;
|
|
|
|
CPPFImdlp& CPPFImdlp::fit(samples_t& X_, labels_t& y_)
|
|
{
|
|
X = X_;
|
|
y = y_;
|
|
cutPoints.clear();
|
|
if (X.size() != y.size()) {
|
|
throw invalid_argument("X and y must have the same size");
|
|
}
|
|
if (X.size() == 0 || y.size() == 0) {
|
|
throw invalid_argument("X and y must have at least one element");
|
|
}
|
|
indices = sortIndices(X_);
|
|
metrics.setData(y, indices);
|
|
if (proposal)
|
|
computeCutPointsProposal();
|
|
else
|
|
computeCutPoints(0, X.size());
|
|
return *this;
|
|
}
|
|
void CPPFImdlp::computeCutPoints(size_t start, size_t end)
|
|
{
|
|
int cut;
|
|
if (end - start < 2)
|
|
return;
|
|
cut = getCandidate(start, end);
|
|
if (cut == -1 || !mdlp(start, cut, end)) {
|
|
// cut.value == -1 means that there is no candidate in the interval
|
|
// No boundary found, so we add both ends of the interval as cutpoints
|
|
// because they were selected by the algorithm before
|
|
if (start != 0)
|
|
cutPoints.push_back((X[indices[start]] + X[indices[start - 1]]) / 2);
|
|
if (end != X.size())
|
|
cutPoints.push_back((X[indices[end]] + X[indices[end - 1]]) / 2);
|
|
return;
|
|
}
|
|
computeCutPoints(start, cut);
|
|
computeCutPoints(cut, end);
|
|
}
|
|
void CPPFImdlp::computeCutPointsOriginal(size_t start, size_t end)
|
|
{
|
|
precision_t cut;
|
|
if (end - start < 2)
|
|
return;
|
|
cut = getCandidate(start, end);
|
|
if (cut == -1)
|
|
return;
|
|
if (mdlp(start, cut, end)) {
|
|
cutPoints.push_back((X[indices[cut]] + X[indices[cut - 1]]) / 2);
|
|
}
|
|
computeCutPointsOriginal(start, cut);
|
|
computeCutPointsOriginal(cut, end);
|
|
}
|
|
void CPPFImdlp::computeCutPointsProposal()
|
|
{
|
|
precision_t xPrev, xCur, xPivot, cutPoint;
|
|
int yPrev, yCur, yPivot;
|
|
size_t idx, numElements, start;
|
|
|
|
xCur = xPrev = X[indices[0]];
|
|
yCur = yPrev = y[indices[0]];
|
|
numElements = indices.size() - 1;
|
|
idx = start = 0;
|
|
while (idx < numElements) {
|
|
xPivot = xCur;
|
|
yPivot = yCur;
|
|
// Read the same values and check class changes
|
|
do {
|
|
idx++;
|
|
xCur = X[indices[idx]];
|
|
yCur = y[indices[idx]];
|
|
if (yCur != yPivot && xCur == xPivot) {
|
|
yPivot = -1;
|
|
}
|
|
}
|
|
while (idx < numElements && xCur == xPivot);
|
|
// Check if the class changed and there are more than 1 element
|
|
if ((idx - start > 1) && (yPivot == -1 || yPrev != yCur) && mdlp(start, idx, indices.size())) {
|
|
start = idx;
|
|
cutPoint = (xPrev + xCur) / 2;
|
|
cutPoints.push_back(cutPoint);
|
|
}
|
|
yPrev = yPivot;
|
|
xPrev = xPivot;
|
|
}
|
|
}
|
|
long int CPPFImdlp::getCandidate(size_t start, size_t end)
|
|
{
|
|
long int candidate = -1, elements = end - start;
|
|
precision_t entropy_left, entropy_right, minEntropy = numeric_limits<precision_t>::max();
|
|
for (auto idx = start + 1; idx < end; idx++) {
|
|
// Cutpoints are always on boudndaries
|
|
if (y[indices[idx]] == y[indices[idx - 1]])
|
|
continue;
|
|
entropy_left = precision_t(idx - start) / elements * metrics.entropy(start, idx);
|
|
entropy_right = precision_t(end - idx) / elements * metrics.entropy(idx, end);
|
|
if (entropy_left + entropy_right < minEntropy) {
|
|
minEntropy = entropy_left + entropy_right;
|
|
candidate = idx;
|
|
}
|
|
}
|
|
return candidate;
|
|
}
|
|
bool CPPFImdlp::mdlp(size_t start, size_t cut, size_t end)
|
|
{
|
|
int k, k1, k2;
|
|
precision_t ig, delta;
|
|
precision_t ent, ent1, ent2;
|
|
auto N = precision_t(end - start);
|
|
if (N < 2) {
|
|
return false;
|
|
}
|
|
k = metrics.computeNumClasses(start, end);
|
|
k1 = metrics.computeNumClasses(start, cut);
|
|
k2 = metrics.computeNumClasses(cut, end);
|
|
ent = metrics.entropy(start, end);
|
|
ent1 = metrics.entropy(start, cut);
|
|
ent2 = metrics.entropy(cut, end);
|
|
ig = metrics.informationGain(start, cut, end);
|
|
delta = log2(pow(3, precision_t(k)) - 2) -
|
|
(precision_t(k) * ent - precision_t(k1) * ent1 - precision_t(k2) * ent2);
|
|
precision_t term = 1 / N * (log2(N - 1) + delta);
|
|
return ig > term;
|
|
}
|
|
cutPoints_t CPPFImdlp::getCutPoints()
|
|
{
|
|
// Remove duplicates and sort
|
|
cutPoints_t output(cutPoints.size());
|
|
set<precision_t> s;
|
|
unsigned size = cutPoints.size();
|
|
for (unsigned i = 0; i < size; i++)
|
|
s.insert(cutPoints[i]);
|
|
output.assign(s.begin(), s.end());
|
|
sort(output.begin(), output.end());
|
|
return output;
|
|
}
|
|
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
|
|
indices_t CPPFImdlp::sortIndices(samples_t& X_)
|
|
{
|
|
indices_t idx(X_.size());
|
|
iota(idx.begin(), idx.end(), 0);
|
|
for (size_t i = 0; i < X_.size(); i++)
|
|
stable_sort(idx.begin(), idx.end(), [&X_](size_t i1, size_t i2)
|
|
{ return X_[i1] < X_[i2]; });
|
|
return idx;
|
|
}
|
|
}
|