Files
mdlp/tests/Metrics_unittest.cpp
Ricardo Montañana d77d27459b refactor system types in library
Add new test taken from join_fit in FImdlp python
Update instructions in README
2023-04-11 19:24:31 +02:00

49 lines
1.5 KiB
C++

#include "gtest/gtest.h"
#include "../Metrics.h"
namespace mdlp {
class TestMetrics : public Metrics, public testing::Test {
public:
labels_t y_ = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2};
indices_t indices_ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
precision_t precision = 0.000001f;
TestMetrics() : Metrics(y_, indices_) {};
void SetUp() override {
setData(y_, indices_);
}
};
TEST_F(TestMetrics, NumClasses) {
y = {1, 1, 1, 1, 1, 1, 1, 1, 2, 1};
EXPECT_EQ(1, computeNumClasses(4, 8));
EXPECT_EQ(2, computeNumClasses(0, 10));
EXPECT_EQ(2, computeNumClasses(8, 10));
}
TEST_F(TestMetrics, Entropy) {
EXPECT_EQ(1, entropy(0, 10));
EXPECT_EQ(0, entropy(0, 5));
y = {1, 1, 1, 1, 1, 1, 1, 1, 2, 1};
setData(y, indices);
ASSERT_NEAR(0.468996f, entropy(0, 10), precision);
}
TEST_F(TestMetrics, EntropyDouble) {
y = {0, 0, 1, 2, 3};
samples_t expected_entropies = {0.0, 0.0, 0.91829583, 1.5, 1.4575424759098898};
for (auto idx = 0; idx < y.size(); ++idx) {
ASSERT_NEAR(expected_entropies[idx], entropy(0, idx + 1), precision);
}
}
TEST_F(TestMetrics, InformationGain) {
ASSERT_NEAR(1, informationGain(0, 5, 10), precision);
ASSERT_NEAR(1, informationGain(0, 5, 10), precision); // For cache
y = {1, 1, 1, 1, 1, 1, 1, 1, 2, 1};
setData(y, indices);
ASSERT_NEAR(0.108032f, informationGain(0, 5, 10), precision);
}
}