mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-15 23:45:57 +00:00
182 lines
6.4 KiB
C++
182 lines
6.4 KiB
C++
#include "gtest/gtest.h"
|
|
#include "../Metrics.h"
|
|
#include "../CPPFImdlp.h"
|
|
#include "ArffFiles.h"
|
|
#include <iostream>
|
|
|
|
namespace mdlp {
|
|
class TestFImdlp: public CPPFImdlp, public testing::Test {
|
|
public:
|
|
precision_t precision = 0.000001;
|
|
TestFImdlp(): CPPFImdlp() {}
|
|
void SetUp()
|
|
{
|
|
X = { 4.7, 4.7, 4.7, 4.7, 4.8, 4.8, 4.8, 4.8, 4.9, 4.95, 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
|
|
y = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
|
fit(X, y);
|
|
}
|
|
void checkSortedVector()
|
|
{
|
|
indices_t testSortedIndices = sortIndices(X, y);
|
|
precision_t prev = X[testSortedIndices[0]];
|
|
for (unsigned long i = 0; i < X.size(); ++i) {
|
|
EXPECT_EQ(testSortedIndices[i], indices[i]);
|
|
EXPECT_LE(prev, X[testSortedIndices[i]]);
|
|
prev = X[testSortedIndices[i]];
|
|
}
|
|
}
|
|
void checkCutPoints(cutPoints_t& expected)
|
|
{
|
|
int expectedSize = expected.size();
|
|
EXPECT_EQ(cutPoints.size(), expectedSize);
|
|
for (unsigned long i = 0; i < cutPoints.size(); i++) {
|
|
EXPECT_NEAR(cutPoints[i], expected[i], precision);
|
|
}
|
|
}
|
|
template<typename T, typename A>
|
|
void checkVectors(std::vector<T, A> const& expected, std::vector<T, A> const& computed)
|
|
{
|
|
EXPECT_EQ(expected.size(), computed.size());
|
|
ASSERT_EQ(expected.size(), computed.size());
|
|
for (auto i = 0; i < expected.size(); i++) {
|
|
EXPECT_NEAR(expected[i], computed[i], precision);
|
|
}
|
|
}
|
|
bool test_result(samples_t& X_, size_t cut, float midPoint, size_t limit, string title)
|
|
{
|
|
pair<precision_t, size_t> result;
|
|
labels_t y_ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
|
X = X_;
|
|
y = y_;
|
|
indices = sortIndices(X, y);
|
|
cout << "* " << title << endl;
|
|
result = valueCutPoint(0, cut, 10);
|
|
EXPECT_NEAR(result.first, midPoint, precision);
|
|
EXPECT_EQ(result.second, limit);
|
|
return true;
|
|
}
|
|
};
|
|
TEST_F(TestFImdlp, FitErrorEmptyDataset)
|
|
{
|
|
X = samples_t();
|
|
y = labels_t();
|
|
EXPECT_THROW(fit(X, y), std::invalid_argument);
|
|
}
|
|
TEST_F(TestFImdlp, FitErrorDifferentSize)
|
|
{
|
|
X = { 1, 2, 3 };
|
|
y = { 1, 2 };
|
|
EXPECT_THROW(fit(X, y), std::invalid_argument);
|
|
}
|
|
TEST_F(TestFImdlp, SortIndices)
|
|
{
|
|
X = { 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
|
|
y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
|
indices = { 4, 3, 6, 8, 2, 1, 5, 0, 9, 7 };
|
|
checkSortedVector();
|
|
X = { 5.77, 5.88, 5.99 };
|
|
y = { 1, 2, 1 };
|
|
indices = { 0, 1, 2 };
|
|
checkSortedVector();
|
|
X = { 5.33, 5.22, 5.11 };
|
|
y = { 1, 2, 1 };
|
|
indices = { 2, 1, 0 };
|
|
checkSortedVector();
|
|
X = { 5.33, 5.22, 5.33 };
|
|
y = { 2, 2, 1 };
|
|
indices = { 1, 2, 0 };
|
|
}
|
|
TEST_F(TestFImdlp, TestShortDatasets)
|
|
{
|
|
vector<precision_t> computed;
|
|
X = { 1 };
|
|
y = { 1 };
|
|
fit(X, y);
|
|
computed = getCutPoints();
|
|
EXPECT_EQ(computed.size(), 0);
|
|
X = { 1, 3 };
|
|
y = { 1, 2 };
|
|
fit(X, y);
|
|
computed = getCutPoints();
|
|
EXPECT_EQ(computed.size(), 0);
|
|
X = { 2, 4 };
|
|
y = { 1, 2 };
|
|
fit(X, y);
|
|
computed = getCutPoints();
|
|
EXPECT_EQ(computed.size(), 0);
|
|
X = { 1, 2, 3 };
|
|
y = { 1, 2, 2 };
|
|
fit(X, y);
|
|
computed = getCutPoints();
|
|
EXPECT_EQ(computed.size(), 1);
|
|
EXPECT_NEAR(computed[0], 1.5, precision);
|
|
}
|
|
TEST_F(TestFImdlp, TestArtificialDataset)
|
|
{
|
|
fit(X, y);
|
|
computeCutPoints(0, 20);
|
|
cutPoints_t expected = { 5.05 };
|
|
vector<precision_t> computed = getCutPoints();
|
|
computed = getCutPoints();
|
|
int expectedSize = expected.size();
|
|
EXPECT_EQ(computed.size(), expected.size());
|
|
for (unsigned long i = 0; i < computed.size(); i++) {
|
|
EXPECT_NEAR(computed[i], expected[i], precision);
|
|
}
|
|
}
|
|
TEST_F(TestFImdlp, TestIris)
|
|
{
|
|
ArffFiles file;
|
|
string path = "../datasets/";
|
|
|
|
file.load(path + "iris.arff", true);
|
|
int items = file.getSize();
|
|
vector<samples_t>& X = file.getX();
|
|
vector<cutPoints_t> expected = {
|
|
{ 5.4499998092651367, 5.75 },
|
|
{ 2.75, 2.85, 2.95, 3.05, 3.35 },
|
|
{ 2.4500000476837158, 4.75, 5.0500001907348633 },
|
|
{ 0.80000001192092896, 1.75 }
|
|
};
|
|
labels_t& y = file.getY();
|
|
auto attributes = file.getAttributes();
|
|
for (auto feature = 0; feature < attributes.size(); feature++) {
|
|
fit(X[feature], y);
|
|
vector<precision_t> computed = getCutPoints();
|
|
EXPECT_EQ(computed.size(), expected[feature].size());
|
|
for (auto i = 0; i < computed.size(); i++) {
|
|
EXPECT_NEAR(computed[i], expected[feature][i], precision);
|
|
}
|
|
}
|
|
}
|
|
TEST_F(TestFImdlp, ComputeCutPointsGCase)
|
|
{
|
|
cutPoints_t expected;
|
|
expected = { 1.5 };
|
|
samples_t X_ = { 0, 1, 2, 2, 2 };
|
|
labels_t y_ = { 1, 1, 1, 2, 2 };
|
|
fit(X_, y_);
|
|
checkCutPoints(expected);
|
|
}
|
|
TEST_F(TestFImdlp, ValueCutPoint)
|
|
{
|
|
// Case titles as stated in the doc
|
|
samples_t X1a{ 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0 };
|
|
test_result(X1a, 6, 7.3 / 2, 6, "1a");
|
|
samples_t X2a = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
|
test_result(X2a, 6, 7.1 / 2, 4, "2a");
|
|
samples_t X2b = { 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
|
test_result(X2b, 6, 7.5 / 2, 7, "2b");
|
|
samples_t X3a = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
|
test_result(X3a, 4, 7.1 / 2, 4, "3a");
|
|
samples_t X3b = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7 };
|
|
test_result(X3b, 4, 7.1 / 2, 4, "3b");
|
|
samples_t X4a = { 3.1, 3.2, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.9, 4.0 };
|
|
test_result(X4a, 4, 6.9 / 2, 2, "4a");
|
|
samples_t X4b = { 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
|
test_result(X4b, 4, 7.5 / 2, 7, "4b");
|
|
samples_t X4c = { 3.1, 3.2, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7 };
|
|
test_result(X4c, 4, 6.9 / 2, 2, "4c");
|
|
}
|
|
}
|