Files
mdlp/Discretizer.cpp

86 lines
3.5 KiB
C++

#include "Discretizer.h"
namespace mdlp {
// The next to templates have been taken to have the chance to customize them to match
// np.searchsorted that is used in scikit-learn KBinsDiscretizer
// Code Taken from https://cplusplus.com/reference/algorithm/upper_bound/?kw=upper_bound
template <class ForwardIterator, class T>
ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last, const T& val)
{
ForwardIterator it;
typename iterator_traits<ForwardIterator>::difference_type count, step;
count = std::distance(first, last);
while (count > 0) {
it = first; step = count / 2; std::advance(it, step);
if (!(val < *it)) // or: if (!comp(val,*it)), for version (2)
{
first = ++it; count -= step + 1;
} else count = step;
}
return first;
}
// Code Taken from https://cplusplus.com/reference/algorithm/lower_bound/?kw=lower_bound
template <class ForwardIterator, class T>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& val)
{
ForwardIterator it;
typename iterator_traits<ForwardIterator>::difference_type count, step;
count = distance(first, last);
while (count > 0) {
it = first; step = count / 2; advance(it, step);
if (*it < val) { // or: if (comp(*it,val)), for version (2)
first = ++it;
count -= step + 1;
} else count = step;
}
return first;
}
labels_t& Discretizer::transform(const samples_t& data)
{
discretizedData.clear();
discretizedData.reserve(data.size());
// CutPoints always have at least two items
// Have to ignore first and last cut points provided
auto first = cutPoints.begin() + 1;
auto last = cutPoints.end() - 1;
auto bound = direction == bound_dir_t::LEFT ? my_lower_bound<std::vector<float>::iterator, float> : my_upper_bound<std::vector<float>::iterator, float>;
for (const precision_t& item : data) {
auto pos = bound(first, last, item);
int number = pos - first;
/*
OJO
*/
if (number < 0)
throw std::runtime_error("number is less than 0 in discretizer::transform");
discretizedData.push_back(number);
}
return discretizedData;
}
labels_t& Discretizer::fit_transform(samples_t& X_, labels_t& y_)
{
fit(X_, y_);
return transform(X_);
}
void Discretizer::fit_t(torch::Tensor& X_, torch::Tensor& y_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
fit(X, y);
}
torch::Tensor Discretizer::transform_t(torch::Tensor& X_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<float>(), X_.data_ptr<float>() + num_elements);
auto result = transform(X);
return torch::tensor(result, torch::kInt32);
}
torch::Tensor Discretizer::fit_transform_t(torch::Tensor& X_, torch::Tensor& y_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
auto result = fit_transform(X, y);
return torch::tensor(result, torch::kInt32);
}
}