Files
mdlp/CPPFImdlp.cpp
2023-01-13 11:44:17 +01:00

200 lines
7.4 KiB
C++

#include <numeric>
#include <algorithm>
#include <set>
#include <cmath>
#include "CPPFImdlp.h"
#include "Metrics.h"
namespace mdlp {
CPPFImdlp::CPPFImdlp(int algorithm):algorithm(algorithm), indices(indices_t()), X(samples_t()), y(labels_t()), metrics(Metrics(y, indices))
{
}
CPPFImdlp::~CPPFImdlp()
= default;
CPPFImdlp& CPPFImdlp::fit(samples_t& X_, labels_t& y_)
{
X = X_;
y = y_;
cutPoints.clear();
if (X.size() != y.size()) {
throw invalid_argument("X and y must have the same size");
}
if (X.size() == 0 || y.size() == 0) {
throw invalid_argument("X and y must have at least one element");
}
indices = sortIndices(X_, y_);
metrics.setData(y, indices);
switch (algorithm) {
case 0:
computeCutPoints(0, X.size());
break;
case 1:
computeCutPointsAlternative(0, X.size());
break;
case 2:
indices = sortIndices1(X_);
metrics.setData(y, indices);
computeCutPointsClassic(0, X.size());
break;
default:
throw invalid_argument("algorithm must be 0, 1 or 2");
}
return *this;
}
precision_t CPPFImdlp::halfWayValueCutPoint(size_t start, size_t idx)
{
size_t idxPrev = idx - 1;
precision_t previous = X[indices[idxPrev]], actual = X[indices[idx]];
// definition 2 of the paper => X[t-1] < X[t]
while (idxPrev-- > start && actual == previous) {
previous = X[indices[idxPrev]];
}
return (previous + actual) / 2;
}
tuple<precision_t, size_t> CPPFImdlp::completeValueCutPoint(size_t start, size_t cut, size_t end)
{
size_t idxPrev = cut - 1;
precision_t previous, actual;
previous = X[indices[idxPrev]];
actual = X[indices[cut]];
// definition 2 of the paper => X[t-1] < X[t]
while (idxPrev-- > start && actual == previous) {
previous = X[indices[idxPrev]];
}
// get the last equal value of X in the interval
while (actual == X[indices[cut++]] && cut < end);
if (previous == actual && cut < end)
actual = X[indices[cut]];
cut--;
return make_tuple((previous + actual) / 2, cut);
}
void CPPFImdlp::computeCutPoints(size_t start, size_t end)
{
size_t cut;
tuple<precision_t, size_t> result;
if (end - start < 2)
return;
cut = getCandidate(start, end);
if (cut == numeric_limits<size_t>::max())
return;
if (mdlp(start, cut, end)) {
result = completeValueCutPoint(start, cut, end);
cut = get<1>(result);
cutPoints.push_back(get<0>(result));
computeCutPoints(start, cut);
computeCutPoints(cut, end);
}
}
void CPPFImdlp::computeCutPointsAlternative(size_t start, size_t end)
{
size_t cut;
if (end - start < 2)
return;
cut = getCandidate(start, end);
if (cut == numeric_limits<size_t>::max())
return;
if (mdlp(start, cut, end)) {
cutPoints.push_back(halfWayValueCutPoint(start, cut));
computeCutPointsAlternative(start, cut);
computeCutPointsAlternative(cut, end);
}
}
void CPPFImdlp::computeCutPointsClassic(size_t start, size_t end)
{
size_t cut;
cut = getCandidate(start, end);
if (cut == numeric_limits<size_t>::max() || !mdlp(start, cut, end)) {
// cut.value == -1 means that there is no candidate in the interval
// No boundary found, so we add both ends of the interval as cutpoints
// because they were selected by the algorithm before
if (start == end)
return;
if (start != 0)
cutPoints.push_back((X[indices[start]] + X[indices[start - 1]]) / 2);
if (end != X.size())
cutPoints.push_back((X[indices[end]] + X[indices[end - 1]]) / 2);
return;
}
computeCutPoints(start, cut);
computeCutPoints(cut, end);
}
size_t CPPFImdlp::getCandidate(size_t start, size_t end)
{
/* Definition 1: A binary discretization for A is determined by selecting the cut point TA for which
E(A, TA; S) is minimal amogst all the candidate cut points. */
size_t candidate = numeric_limits<size_t>::max(), elements = end - start;
precision_t entropy_left, entropy_right, minEntropy;
minEntropy = metrics.entropy(start, end);
for (auto idx = start + 1; idx < end; idx++) {
// Cutpoints are always on boundaries (definition 2)
if (y[indices[idx]] == y[indices[idx - 1]])
continue;
entropy_left = precision_t(idx - start) / elements * metrics.entropy(start, idx);
entropy_right = precision_t(end - idx) / elements * metrics.entropy(idx, end);
if (entropy_left + entropy_right < minEntropy) {
minEntropy = entropy_left + entropy_right;
candidate = idx;
}
}
return candidate;
}
bool CPPFImdlp::mdlp(size_t start, size_t cut, size_t end)
{
int k, k1, k2;
precision_t ig, delta;
precision_t ent, ent1, ent2;
auto N = precision_t(end - start);
if (N < 2) {
return false;
}
k = metrics.computeNumClasses(start, end);
k1 = metrics.computeNumClasses(start, cut);
k2 = metrics.computeNumClasses(cut, end);
ent = metrics.entropy(start, end);
ent1 = metrics.entropy(start, cut);
ent2 = metrics.entropy(cut, end);
ig = metrics.informationGain(start, cut, end);
delta = log2(pow(3, precision_t(k)) - 2) -
(precision_t(k) * ent - precision_t(k1) * ent1 - precision_t(k2) * ent2);
precision_t term = 1 / N * (log2(N - 1) + delta);
return ig > term;
}
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
indices_t CPPFImdlp::sortIndices(samples_t& X_, labels_t& y_)
{
indices_t idx(X_.size());
iota(idx.begin(), idx.end(), 0);
for (size_t i = 0; i < X_.size(); i++)
stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2)
{
if (X_[i1] == X_[i2]) return y_[i1] < y_[i2];
else
return X_[i1] < X_[i2];
});
return idx;
}
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
indices_t CPPFImdlp::sortIndices1(samples_t& X_)
{
indices_t idx(X_.size());
iota(idx.begin(), idx.end(), 0);
for (size_t i = 0; i < X_.size(); i++)
stable_sort(idx.begin(), idx.end(), [&X_](size_t i1, size_t i2)
{
return X_[i1] < X_[i2];
});
return idx;
}
cutPoints_t CPPFImdlp::getCutPoints()
{
// Remove duplicates and sort
cutPoints_t output(cutPoints.size());
set<precision_t> s;
unsigned size = cutPoints.size();
for (unsigned i = 0; i < size; i++)
s.insert(cutPoints[i]);
output.assign(s.begin(), s.end());
sort(output.begin(), output.end());
return output;
}
}