#include "gtest/gtest.h" #include "../Metrics.h" #include "../CPPFImdlp.h" #include #include #include "ArffFiles.h" #define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \ try { \ stmt; \ } catch (const etype& ex) { \ EXPECT_EQ(whatstring, std::string(ex.what())); \ throw; \ } \ , etype) namespace mdlp { class TestFImdlp : public CPPFImdlp, public testing::Test { public: precision_t precision = 0.000001f; TestFImdlp() : CPPFImdlp() {} string data_path; void SetUp() override { X = {4.7f, 4.7f, 4.7f, 4.7f, 4.8f, 4.8f, 4.8f, 4.8f, 4.9f, 4.95f, 5.7f, 5.3f, 5.2f, 5.1f, 5.0f, 5.6f, 5.1f, 6.0f, 5.1f, 5.9f}; y = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2}; fit(X, y); data_path = set_data_path(); } static string set_data_path() { string path = "../datasets/"; ifstream file(path + "iris.arff"); if (file.is_open()) { file.close(); return path; } return "../../tests/datasets/"; } void checkSortedVector() { indices_t testSortedIndices = sortIndices(X, y); precision_t prev = X[testSortedIndices[0]]; for (unsigned long i = 0; i < X.size(); ++i) { EXPECT_EQ(testSortedIndices[i], indices[i]); EXPECT_LE(prev, X[testSortedIndices[i]]); prev = X[testSortedIndices[i]]; } } void checkCutPoints(cutPoints_t &computed, cutPoints_t &expected) const { EXPECT_EQ(computed.size(), expected.size()); for (unsigned long i = 0; i < computed.size(); i++) { cout << "(" << computed[i] << ", " << expected[i] << ") "; EXPECT_NEAR(computed[i], expected[i], precision); } } bool test_result(const samples_t &X_, size_t cut, float midPoint, size_t limit, const string &title) { pair result; labels_t y_ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; X = X_; y = y_; indices = sortIndices(X, y); cout << "* " << title << endl; result = valueCutPoint(0, cut, 10); EXPECT_NEAR(result.first, midPoint, precision); EXPECT_EQ(result.second, limit); return true; } void test_dataset(CPPFImdlp &test, const string &filename, vector &expected, vector &depths) const { ArffFiles file; file.load(data_path + filename + ".arff", true); vector &X = file.getX(); labels_t &y = file.getY(); auto attributes = file.getAttributes(); for (auto feature = 0; feature < attributes.size(); feature++) { test.fit(X[feature], y); EXPECT_EQ(test.get_depth(), depths[feature]); auto computed = test.getCutPoints(); cout << "Feature " << feature << ": "; checkCutPoints(computed, expected[feature]); cout << endl; } } }; TEST_F(TestFImdlp, FitErrorEmptyDataset) { X = samples_t(); y = labels_t(); EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have at least one element"); } TEST_F(TestFImdlp, FitErrorDifferentSize) { X = {1, 2, 3}; y = {1, 2}; EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have the same size"); } TEST_F(TestFImdlp, FitErrorMinLengtMaxDepth) { auto testLength = CPPFImdlp(2, 10, 0); auto testDepth = CPPFImdlp(3, 0, 0); X = {1, 2, 3}; y = {1, 2, 3}; EXPECT_THROW_WITH_MESSAGE(testLength.fit(X, y), invalid_argument, "min_length must be greater than 2"); EXPECT_THROW_WITH_MESSAGE(testDepth.fit(X, y), invalid_argument, "max_depth must be greater than 0"); } TEST_F(TestFImdlp, JoinFit) { samples_t X_ = {1, 2, 2, 3, 4, 2, 3}; labels_t y_ = {0, 0, 1, 2, 3, 4, 5}; cutPoints_t expected = {1.5f, 2.5f}; fit(X_, y_); auto computed = getCutPoints(); EXPECT_EQ(computed.size(), expected.size()); checkCutPoints(computed, expected); } TEST_F(TestFImdlp, FitErrorMaxCutPoints) { auto testmin = CPPFImdlp(2, 10, -1); auto testmax = CPPFImdlp(3, 0, 200); X = {1, 2, 3}; y = {1, 2, 3}; EXPECT_THROW_WITH_MESSAGE(testmin.fit(X, y), invalid_argument, "wrong proposed num_cuts value"); EXPECT_THROW_WITH_MESSAGE(testmax.fit(X, y), invalid_argument, "wrong proposed num_cuts value"); } TEST_F(TestFImdlp, SortIndices) { X = {5.7f, 5.3f, 5.2f, 5.1f, 5.0f, 5.6f, 5.1f, 6.0f, 5.1f, 5.9f}; y = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2}; indices = {4, 3, 6, 8, 2, 1, 5, 0, 9, 7}; checkSortedVector(); X = {5.77f, 5.88f, 5.99f}; y = {1, 2, 1}; indices = {0, 1, 2}; checkSortedVector(); X = {5.33f, 5.22f, 5.11f}; y = {1, 2, 1}; indices = {2, 1, 0}; checkSortedVector(); X = {5.33f, 5.22f, 5.33f}; y = {2, 2, 1}; indices = {1, 2, 0}; } TEST_F(TestFImdlp, TestShortDatasets) { vector computed; X = {1}; y = {1}; fit(X, y); computed = getCutPoints(); EXPECT_EQ(computed.size(), 0); X = {1, 3}; y = {1, 2}; fit(X, y); computed = getCutPoints(); EXPECT_EQ(computed.size(), 0); X = {2, 4}; y = {1, 2}; fit(X, y); computed = getCutPoints(); EXPECT_EQ(computed.size(), 0); X = {1, 2, 3}; y = {1, 2, 2}; fit(X, y); computed = getCutPoints(); EXPECT_EQ(computed.size(), 1); EXPECT_NEAR(computed[0], 1.5, precision); } TEST_F(TestFImdlp, TestArtificialDataset) { fit(X, y); cutPoints_t expected = {5.05f}; vector computed = getCutPoints(); EXPECT_EQ(computed.size(), expected.size()); for (unsigned long i = 0; i < computed.size(); i++) { EXPECT_NEAR(computed[i], expected[i], precision); } } TEST_F(TestFImdlp, TestIris) { vector expected = { {5.45f, 5.75f}, {2.75f, 2.85f, 2.95f, 3.05f, 3.35f}, {2.45f, 4.75f, 5.05f}, {0.8f, 1.75f} }; vector depths = {3, 5, 4, 3}; auto test = CPPFImdlp(); test_dataset(test, "iris", expected, depths); } TEST_F(TestFImdlp, ComputeCutPointsGCase) { cutPoints_t expected; expected = {1.5}; samples_t X_ = {0, 1, 2, 2, 2}; labels_t y_ = {1, 1, 1, 2, 2}; fit(X_, y_); auto computed = getCutPoints(); checkCutPoints(computed, expected); } TEST_F(TestFImdlp, ValueCutPoint) { // Case titles as stated in the doc samples_t X1a{3.1f, 3.2f, 3.3f, 3.4f, 3.5f, 3.6f, 3.7f, 3.8f, 3.9f, 4.0f}; test_result(X1a, 6, 7.3f / 2, 6, "1a"); samples_t X2a = {3.1f, 3.2f, 3.3f, 3.4f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f}; test_result(X2a, 6, 7.1f / 2, 4, "2a"); samples_t X2b = {3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f}; test_result(X2b, 6, 7.5f / 2, 7, "2b"); samples_t X3a = {3.f, 3.2f, 3.3f, 3.4f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f}; test_result(X3a, 4, 7.1f / 2, 4, "3a"); samples_t X3b = {3.1f, 3.2f, 3.3f, 3.4f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f}; test_result(X3b, 4, 7.1f / 2, 4, "3b"); samples_t X4a = {3.1f, 3.2f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.9f, 4.0f}; test_result(X4a, 4, 6.9f / 2, 2, "4a"); samples_t X4b = {3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f}; test_result(X4b, 4, 7.5f / 2, 7, "4b"); samples_t X4c = {3.1f, 3.2f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f}; test_result(X4c, 4, 6.9f / 2, 2, "4c"); } TEST_F(TestFImdlp, MaxDepth) { // Set max_depth to 1 auto test = CPPFImdlp(3, 1, 0); vector expected = { {5.45f}, {3.35f}, {2.45f}, {0.8f} }; vector depths = {1, 1, 1, 1}; test_dataset(test, "iris", expected, depths); } TEST_F(TestFImdlp, MinLength) { auto test = CPPFImdlp(75, 100, 0); // Set min_length to 75 vector expected = { {5.45f, 5.75f}, {2.85f, 3.35f}, {2.45f, 4.75f}, {0.8f, 1.75f} }; vector depths = {3, 2, 2, 2}; test_dataset(test, "iris", expected, depths); } TEST_F(TestFImdlp, MinLengthMaxDepth) { // Set min_length to 75 auto test = CPPFImdlp(75, 2, 0); vector expected = { {5.45f, 5.75f}, {2.85f, 3.35f}, {2.45f, 4.75f}, {0.8f, 1.75f} }; vector depths = {2, 2, 2, 2}; test_dataset(test, "iris", expected, depths); } TEST_F(TestFImdlp, MaxCutPointsInteger) { // Set min_length to 75 auto test = CPPFImdlp(75, 2, 1); vector expected = { {5.45f}, {2.85f}, {2.45f}, {0.8f} }; vector depths = {2, 2, 2, 2}; test_dataset(test, "iris", expected, depths); } TEST_F(TestFImdlp, MaxCutPointsFloat) { // Set min_length to 75 auto test = CPPFImdlp(75, 2, 0.2f); vector expected = { {5.45f, 5.75f}, {2.85f, 3.35f}, {2.45f, 4.75f}, {0.8f, 1.75f} }; vector depths = {2, 2, 2, 2}; test_dataset(test, "iris", expected, depths); } TEST_F(TestFImdlp, ProposedCuts) { vector> proposed_list = {{0.1f, 2}, {0.5f, 10}, {0.07f, 1}, {1.0f, 1}, {2.0f, 2}}; size_t expected; size_t computed; for (auto proposed_item: proposed_list) { tie(proposed_cuts, expected) = proposed_item; computed = compute_max_num_cut_points(); ASSERT_EQ(expected, computed); } } }