#include #include #include #include "BinDisc.h" #include #include namespace mdlp { BinDisc::BinDisc(int n_bins, strategy_t strategy) : Discretizer(), n_bins{ n_bins }, strategy{ strategy } { if (n_bins < 3) { throw std::invalid_argument("n_bins must be greater than 2"); } } BinDisc::~BinDisc() = default; void BinDisc::fit(samples_t& X) { // y is included for compatibility with the Discretizer interface cutPoints.clear(); if (X.empty()) { cutPoints.push_back(std::numeric_limits::max()); return; } if (strategy == strategy_t::QUANTILE) { fit_quantile(X); } else if (strategy == strategy_t::UNIFORM) { fit_uniform(X); } } void BinDisc::fit(samples_t& X, labels_t& y) { fit(X); } std::vector linspace(precision_t start, precision_t end, int num) { // Doesn't include end point as it is not needed if (start == end) { return { 0 }; } precision_t delta = (end - start) / static_cast(num - 1); std::vector linspc; for (size_t i = 0; i < num - 1; ++i) { precision_t val = start + delta * static_cast(i); linspc.push_back(val); } return linspc; } size_t clip(const size_t n, size_t lower, size_t upper) { return std::max(lower, std::min(n, upper)); } std::vector percentile(samples_t& data, std::vector& percentiles) { // Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html std::vector results; results.reserve(percentiles.size()); for (auto percentile : percentiles) { const size_t i = static_cast(std::floor(static_cast(data.size() - 1) * percentile / 100.)); const auto indexLower = clip(i, 0, data.size() - 1); const double percentI = static_cast(indexLower) / static_cast(data.size() - 1); const double fraction = (percentile / 100.0 - percentI) / (static_cast(indexLower + 1) / static_cast(data.size() - 1) - percentI); const auto value = data[indexLower] + (data[indexLower + 1] - data[indexLower]) * fraction; if (value != results.back()) results.push_back(value); } return results; } void BinDisc::fit_quantile(samples_t& X) { auto quantiles = linspace(0.0, 100.0, n_bins + 1); auto data = X; std::sort(data.begin(), data.end()); if (data.front() == data.back() || data.size() == 1) { // if X is constant cutPoints.push_back(std::numeric_limits::max()); return; } cutPoints = percentile(data, quantiles); normalizeCutPoints(); } void BinDisc::fit_uniform(samples_t& X) { auto minmax = std::minmax_element(X.begin(), X.end()); cutPoints = linspace(*minmax.first, *minmax.second, n_bins + 1); normalizeCutPoints(); } void BinDisc::normalizeCutPoints() { // Add max value to the end cutPoints.push_back(std::numeric_limits::max()); // Remove first as it is not needed cutPoints.erase(cutPoints.begin()); } }