7 Commits

11 changed files with 46 additions and 22 deletions

View File

@@ -28,7 +28,7 @@ jobs:
unzip libtorch-cxx11-abi-shared-with-deps-2.3.1+cpu.zip
- name: Tests & build-wrapper
run: |
cmake -S . -B build -Wno-dev -DCMAKE_PREFIX_PATH=$(pwd)/libtorch
cmake -S . -B build -Wno-dev -DCMAKE_PREFIX_PATH=$(pwd)/libtorch -DENABLE_TESTING=ON
build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build/ --config Release
cd build
make

2
.gitignore vendored
View File

@@ -33,6 +33,8 @@
**/build
build_Debug
build_Release
build_debug
build_release
**/lcoverage
.idea
cmake-*

View File

@@ -58,7 +58,7 @@ namespace mdlp {
results.reserve(percentiles.size());
for (auto percentile : percentiles) {
const size_t i = static_cast<size_t>(std::floor(static_cast<double>(data.size() - 1) * percentile / 100.));
const auto indexLower = clip(i, 0, data.size() - 1);
const auto indexLower = clip(i, 0, data.size() - 2);
const double percentI = static_cast<double>(indexLower) / static_cast<double>(data.size() - 1);
const double fraction =
(percentile / 100.0 - percentI) /

View File

@@ -6,4 +6,6 @@ include_directories(${TORCH_INCLUDE_DIRS})
add_library(mdlp CPPFImdlp.cpp Metrics.cpp BinDisc.cpp Discretizer.cpp)
target_link_libraries(mdlp "${TORCH_LIBRARIES}")
add_subdirectory(sample)
if (ENABLE_TESTING)
add_subdirectory(tests)
endif(ENABLE_TESTING)

View File

@@ -20,7 +20,7 @@ namespace mdlp {
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int64_t>(), y_.data_ptr<int64_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
fit(X, y);
}
torch::Tensor Discretizer::transform_t(torch::Tensor& X_)
@@ -28,14 +28,14 @@ namespace mdlp {
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<float>(), X_.data_ptr<float>() + num_elements);
auto result = transform(X);
return torch::tensor(result, torch::kInt64);
return torch::tensor(result, torch::kInt32);
}
torch::Tensor Discretizer::fit_transform_t(torch::Tensor& X_, torch::Tensor& y_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int64_t>(), y_.data_ptr<int64_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
auto result = fit_transform(X, y);
return torch::tensor(result, torch::kInt64);
return torch::tensor(result, torch::kInt32);
}
}

View File

@@ -18,7 +18,7 @@ namespace mdlp {
void fit_t(torch::Tensor& X_, torch::Tensor& y_);
torch::Tensor transform_t(torch::Tensor& X_);
torch::Tensor fit_transform_t(torch::Tensor& X_, torch::Tensor& y_);
static inline std::string version() { return "1.2.1"; };
static inline std::string version() { return "1.2.2"; };
protected:
labels_t discretizedData = labels_t();
cutPoints_t cutPoints;

13
Makefile Normal file
View File

@@ -0,0 +1,13 @@
SHELL := /bin/bash
.DEFAULT_GOAL := build
.PHONY: build test
build:
@if [ -d build_release ]; then rm -fr build_release; fi
@mkdir build_release
@cmake -B build_release -S . -DCMAKE_BUILD_TYPE=Release -DENABLE_TESTING=OFF
@cmake --build build_release
test:
@echo "Testing..."
@cd tests && ./test

View File

@@ -14,9 +14,17 @@ The implementation tries to mitigate the problem of different label values with
Other features:
- Intervals with the same value of the variable are not taken into account for cutpoints.
- Intervals have to have more than two examples to be evaluated.
- Intervals have to have more than two examples to be evaluated (mdlp).
The algorithm returns the cut points for the variable.
- The algorithm returns the cut points for the variable.
- The transform method uses the cut points returning its index in the following way:
cut[i - 1] <= x < cut[i]
using the [std::upper_bound](https://en.cppreference.com/w/cpp/algorithm/upper_bound) method
- K-Bins discretization is also implemented, and "quantile" and "uniform" strategies are available.
## Sample
@@ -34,6 +42,5 @@ build/sample/sample -h
To run the tests and see coverage (llvm & gcovr have to be installed), execute the following commands:
```bash
cd tests
./test
make test
```

View File

@@ -139,12 +139,12 @@ void process_file(const string& path, const string& file_name, bool class_last,
std::cout << std::fixed << std::setprecision(1) << X[0][i] << " " << data[i] << std::endl;
}
auto Xt = torch::tensor(X[0], torch::kFloat32);
auto yt = torch::tensor(y, torch::kInt64);
auto yt = torch::tensor(y, torch::kInt32);
//test.fit_t(Xt, yt);
auto result = test.fit_transform_t(Xt, yt);
std::cout << "Transformed data (torch)...: " << std::endl;
for (int i = 130; i < 135; i++) {
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<float>() << " " << result[i].item<int64_t>() << std::endl;
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<float>() << " " << result[i].item<int>() << std::endl;
}
auto disc = mdlp::BinDisc(3);
auto res_v = disc.fit_transform(X[0], y);
@@ -152,7 +152,7 @@ void process_file(const string& path, const string& file_name, bool class_last,
auto res_t = disc.transform_t(Xt);
std::cout << "Transformed data (BinDisc)...: " << std::endl;
for (int i = 130; i < 135; i++) {
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<float>() << " " << res_v[i] << " " << res_t[i].item<int64_t>() << std::endl;
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<float>() << " " << res_v[i] << " " << res_t[i].item<int>() << std::endl;
}
}

View File

@@ -3,7 +3,7 @@ sonar.organization=rmontanana
# This is the name and version displayed in the SonarCloud UI.
sonar.projectName=mdlp
sonar.projectVersion=1.1.3
sonar.projectVersion=1.2.1
# sonar.test.exclusions=tests/**
# sonar.tests=tests/
# sonar.coverage.exclusions=tests/**,sample/**

View File

@@ -335,10 +335,10 @@ namespace mdlp {
auto Xtt = fit_transform(X[0], file.getY());
EXPECT_EQ(expected, Xtt);
auto Xt_t = torch::tensor(X[0], torch::kFloat32);
auto y_t = torch::tensor(file.getY(), torch::kInt64);
auto y_t = torch::tensor(file.getY(), torch::kInt32);
auto Xtt_t = fit_transform_t(Xt_t, y_t);
for (int i = 0; i < expected.size(); i++)
EXPECT_EQ(expected[i], Xtt_t[i].item<int64_t>());
EXPECT_EQ(expected[i], Xtt_t[i].item<int>());
}
TEST_F(TestBinDisc4Q, irisQuantile)
{
@@ -352,13 +352,13 @@ namespace mdlp {
auto Xtt = fit_transform(X[0], file.getY());
EXPECT_EQ(expected, Xtt);
auto Xt_t = torch::tensor(X[0], torch::kFloat32);
auto y_t = torch::tensor(file.getY(), torch::kInt64);
auto y_t = torch::tensor(file.getY(), torch::kInt32);
auto Xtt_t = fit_transform_t(Xt_t, y_t);
for (int i = 0; i < expected.size(); i++)
EXPECT_EQ(expected[i], Xtt_t[i].item<int64_t>());
EXPECT_EQ(expected[i], Xtt_t[i].item<int>());
fit_t(Xt_t, y_t);
auto Xt_t2 = transform_t(Xt_t);
for (int i = 0; i < expected.size(); i++)
EXPECT_EQ(expected[i], Xt_t2[i].item<int64_t>());
EXPECT_EQ(expected[i], Xt_t2[i].item<int>());
}
}