11 Commits

18 changed files with 1009 additions and 52 deletions

View File

@@ -1,18 +1,16 @@
FROM mcr.microsoft.com/devcontainers/cpp:0-ubuntu-22.04 FROM mcr.microsoft.com/devcontainers/cpp:0-ubuntu-22.04
ARG REINSTALL_CMAKE_VERSION_FROM_SOURCE="3.22.2" RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
&& apt-get -y install --no-install-recommends \
# Optionally install the cmake for vcpkg python3 \
COPY ./reinstall-cmake.sh /tmp/ python3-pip \
lcov \
RUN if [ "${REINSTALL_CMAKE_VERSION_FROM_SOURCE}" != "none" ]; then \ cmake \
chmod +x /tmp/reinstall-cmake.sh && /tmp/reinstall-cmake.sh ${REINSTALL_CMAKE_VERSION_FROM_SOURCE}; \ && apt-get autoremove -y && apt-get clean -y && rm -rf /var/lib/apt/lists/*
fi \
&& rm -f /tmp/reinstall-cmake.sh
RUN pip3 install --no-cache-dir \
cpplint \
cmake-format\
gcovr
# [Optional] Uncomment this section to install additional vcpkg ports. # [Optional] Uncomment this section to install additional vcpkg ports.
# RUN su vscode -c "${VCPKG_ROOT}/vcpkg install <your-port-name-here>" # RUN su vscode -c "${VCPKG_ROOT}/vcpkg install <your-port-name-here>"
# [Optional] Uncomment this section to install additional packages.
# RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
# && apt-get -y install --no-install-recommends <your-package-list-here>

View File

@@ -13,11 +13,11 @@ jobs:
env: env:
BUILD_WRAPPER_OUT_DIR: build_wrapper_output_directory # Directory where build-wrapper output will be placed BUILD_WRAPPER_OUT_DIR: build_wrapper_output_directory # Directory where build-wrapper output will be placed
steps: steps:
- uses: actions/checkout@v3.2.0 - uses: actions/checkout@v4.1.6
with: with:
fetch-depth: 0 # Shallow clones should be disabled for a better relevancy of analysis fetch-depth: 0 # Shallow clones should be disabled for a better relevancy of analysis
- name: Install sonar-scanner and build-wrapper - name: Install sonar-scanner and build-wrapper
uses: SonarSource/sonarcloud-github-c-cpp@v1 uses: SonarSource/sonarcloud-github-c-cpp@v2
- name: Install lcov & gcovr - name: Install lcov & gcovr
run: | run: |
sudo apt-get -y install lcov sudo apt-get -y install lcov
@@ -30,8 +30,7 @@ jobs:
make make
ctest -C Release --output-on-failure --test-dir tests ctest -C Release --output-on-failure --test-dir tests
cd .. cd ..
# gcovr -f CPPFImdlp.cpp -f Metrics.cpp --merge-mode-functions=separate --txt --sonarqube=coverage.xml gcovr -f CPPFImdlp.cpp -f Metrics.cpp -f BinDisc.cpp --txt --sonarqube=coverage.xml
gcovr -f CPPFImdlp.cpp -f Metrics.cpp --txt --sonarqube=coverage.xml
- name: Run sonar-scanner - name: Run sonar-scanner
env: env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

2
.gitignore vendored
View File

@@ -31,6 +31,8 @@
*.out *.out
*.app *.app
**/build **/build
build_Debug
build_Release
**/lcoverage **/lcoverage
.idea .idea
cmake-* cmake-*

138
BinDisc.cpp Normal file
View File

@@ -0,0 +1,138 @@
#include <algorithm>
#include <limits>
#include <cmath>
#include "BinDisc.h"
#include <iostream>
#include <string>
namespace mdlp {
BinDisc::BinDisc(int n_bins, strategy_t strategy) : n_bins{ n_bins }, strategy{ strategy }
{
if (n_bins < 3) {
throw std::invalid_argument("n_bins must be greater than 2");
}
}
BinDisc::~BinDisc() = default;
void BinDisc::fit(samples_t& X)
{
cutPoints.clear();
if (X.empty()) {
cutPoints.push_back(std::numeric_limits<precision_t>::max());
return;
}
if (strategy == strategy_t::QUANTILE) {
fit_quantile(X);
} else if (strategy == strategy_t::UNIFORM) {
fit_uniform(X);
}
}
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
{
// Doesn't include end point as it is not needed
if (start == end) {
return { 0 };
}
precision_t delta = (end - start) / static_cast<precision_t>(num - 1);
std::vector<precision_t> linspc;
for (size_t i = 0; i < num - 1; ++i) {
precision_t val = start + delta * static_cast<precision_t>(i);
linspc.push_back(val);
}
return linspc;
}
size_t clip(const size_t n, size_t lower, size_t upper)
{
return std::max(lower, std::min(n, upper));
}
std::vector<precision_t> percentile(samples_t& data, std::vector<precision_t>& percentiles)
{
// Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html
std::vector<precision_t> results;
results.reserve(percentiles.size());
for (auto percentile : percentiles) {
const size_t i = static_cast<size_t>(std::floor(static_cast<double>(data.size() - 1) * percentile / 100.));
const auto indexLower = clip(i, 0, data.size() - 1);
const double percentI = static_cast<double>(indexLower) / static_cast<double>(data.size() - 1);
const double fraction =
(percentile / 100.0 - percentI) /
(static_cast<double>(indexLower + 1) / static_cast<double>(data.size() - 1) - percentI);
const auto value = data[indexLower] + (data[indexLower + 1] - data[indexLower]) * fraction;
if (value != results.back())
results.push_back(value);
}
return results;
}
void BinDisc::fit_quantile(samples_t& X)
{
auto quantiles = linspace(0.0, 100.0, n_bins + 1);
auto data = X;
std::sort(data.begin(), data.end());
if (data.front() == data.back() || data.size() == 1) {
// if X is constant
cutPoints.push_back(std::numeric_limits<precision_t>::max());
return;
}
cutPoints = percentile(data, quantiles);
normalizeCutPoints();
}
void BinDisc::fit_uniform(samples_t& X)
{
auto minmax = std::minmax_element(X.begin(), X.end());
cutPoints = linspace(*minmax.first, *minmax.second, n_bins + 1);
normalizeCutPoints();
}
void BinDisc::normalizeCutPoints()
{
// Add max value to the end
cutPoints.push_back(std::numeric_limits<precision_t>::max());
// Remove first as it is not needed
cutPoints.erase(cutPoints.begin());
}
labels_t& BinDisc::transform(const samples_t& X)
{
discretizedData.clear();
discretizedData.reserve(X.size());
for (const precision_t& item : X) {
auto upper = std::upper_bound(cutPoints.begin(), cutPoints.end(), item);
discretizedData.push_back(upper - cutPoints.begin());
}
return discretizedData;
}
}
// void BinDisc::fit_quantile(samples_t& X)
// {
// cutPoints.clear();
// if (X.empty()) {
// cutPoints.push_back(std::numeric_limits<float>::max());
// return;
// }
// samples_t data = X;
// std::sort(data.begin(), data.end());
// float min_val = data.front();
// float max_val = data.back();
// // Handle case of all data points having the same value
// if (min_val == max_val) {
// cutPoints.push_back(std::numeric_limits<float>::max());
// return;
// }
// int first = X.size() / n_bins;
// cutPoints.push_back(data.at(first - 1));
// int bins_done = 1;
// int prev = first - 1;
// while (bins_done < n_bins) {
// int next = first * (bins_done + 1) - 1;
// while (next < X.size() && data.at(next) == data[prev]) {
// ++next;
// }
// if (next == X.size() || bins_done == n_bins - 1) {
// cutPoints.push_back(std::numeric_limits<float>::max());
// break;
// } else {
// cutPoints.push_back(data[next]);
// bins_done++;
// prev = next;
// }
// }
// }

31
BinDisc.h Normal file
View File

@@ -0,0 +1,31 @@
#ifndef BINDISC_H
#define BINDISC_H
#include "typesFImdlp.h"
#include <string>
namespace mdlp {
enum class strategy_t {
UNIFORM,
QUANTILE
};
class BinDisc {
public:
BinDisc(int n_bins = 3, strategy_t strategy = strategy_t::UNIFORM);
~BinDisc();
void fit(samples_t&);
inline cutPoints_t getCutPoints() const { return cutPoints; };
labels_t& transform(const samples_t&);
static inline std::string version() { return "1.0.0"; };
private:
void fit_uniform(samples_t&);
void fit_quantile(samples_t&);
void normalizeCutPoints();
int n_bins;
strategy_t strategy;
labels_t discretizedData = labels_t();
cutPoints_t cutPoints;
};
}
#endif

View File

@@ -7,7 +7,7 @@ endif ()
set(CMAKE_CXX_STANDARD 11) set(CMAKE_CXX_STANDARD 11)
add_library(mdlp CPPFImdlp.cpp Metrics.cpp sample/sample.cpp) add_library(mdlp CPPFImdlp.cpp Metrics.cpp)
add_subdirectory(sample) add_subdirectory(sample)
add_subdirectory(tests) add_subdirectory(tests)

View File

@@ -3,11 +3,10 @@
#include <set> #include <set>
#include <cmath> #include <cmath>
#include "CPPFImdlp.h" #include "CPPFImdlp.h"
#include "Metrics.h"
namespace mdlp { namespace mdlp {
CPPFImdlp::CPPFImdlp(size_t min_length_, int max_depth_, float proposed): min_length(min_length_), CPPFImdlp::CPPFImdlp(size_t min_length_, int max_depth_, float proposed) : min_length(min_length_),
max_depth(max_depth_), max_depth(max_depth_),
proposed_cuts(proposed) proposed_cuts(proposed)
{ {
@@ -37,6 +36,7 @@ namespace mdlp {
y = y_; y = y_;
num_cut_points = compute_max_num_cut_points(); num_cut_points = compute_max_num_cut_points();
depth = 0; depth = 0;
discretizedData.clear();
cutPoints.clear(); cutPoints.clear();
if (X.size() != y.size()) { if (X.size() != y.size()) {
throw invalid_argument("X and y must have the same size"); throw invalid_argument("X and y must have the same size");
@@ -177,7 +177,7 @@ namespace mdlp {
indices_t CPPFImdlp::sortIndices(samples_t& X_, labels_t& y_) indices_t CPPFImdlp::sortIndices(samples_t& X_, labels_t& y_)
{ {
indices_t idx(X_.size()); indices_t idx(X_.size());
iota(idx.begin(), idx.end(), 0); std::iota(idx.begin(), idx.end(), 0);
stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2) { stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2) {
if (X_[i1] == X_[i2]) if (X_[i1] == X_[i2])
return y_[i1] < y_[i2]; return y_[i1] < y_[i2];
@@ -208,4 +208,14 @@ namespace mdlp {
} }
cutPoints.erase(cutPoints.begin() + static_cast<long>(maxEntropyIdx)); cutPoints.erase(cutPoints.begin() + static_cast<long>(maxEntropyIdx));
} }
labels_t& CPPFImdlp::transform(const samples_t& data)
{
discretizedData.clear();
discretizedData.reserve(data.size());
for (const precision_t& item : data) {
auto upper = std::upper_bound(cutPoints.begin(), cutPoints.end(), item);
discretizedData.push_back(upper - cutPoints.begin());
}
return discretizedData;
}
} }

View File

@@ -2,13 +2,22 @@
#define CPPFIMDLP_H #define CPPFIMDLP_H
#include "typesFImdlp.h" #include "typesFImdlp.h"
#include "Metrics.h"
#include <limits> #include <limits>
#include <utility> #include <utility>
#include <string> #include <string>
#include "Metrics.h"
namespace mdlp { namespace mdlp {
class CPPFImdlp { class CPPFImdlp {
public:
CPPFImdlp();
CPPFImdlp(size_t, int, float);
~CPPFImdlp();
void fit(samples_t&, labels_t&);
inline cutPoints_t getCutPoints() const { return cutPoints; };
labels_t& transform(const samples_t&);
inline int get_depth() const { return depth; };
static inline std::string version() { return "1.1.3"; };
protected: protected:
size_t min_length = 3; size_t min_length = 3;
int depth = 0; int depth = 0;
@@ -20,24 +29,14 @@ namespace mdlp {
Metrics metrics = Metrics(y, indices); Metrics metrics = Metrics(y, indices);
cutPoints_t cutPoints; cutPoints_t cutPoints;
size_t num_cut_points = numeric_limits<size_t>::max(); size_t num_cut_points = numeric_limits<size_t>::max();
labels_t discretizedData = labels_t();
static indices_t sortIndices(samples_t&, labels_t&); static indices_t sortIndices(samples_t&, labels_t&);
void computeCutPoints(size_t, size_t, int); void computeCutPoints(size_t, size_t, int);
void resizeCutPoints(); void resizeCutPoints();
bool mdlp(size_t, size_t, size_t); bool mdlp(size_t, size_t, size_t);
size_t getCandidate(size_t, size_t); size_t getCandidate(size_t, size_t);
size_t compute_max_num_cut_points() const; size_t compute_max_num_cut_points() const;
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t); pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
public:
CPPFImdlp();
CPPFImdlp(size_t, int, float);
~CPPFImdlp();
void fit(samples_t&, labels_t&);
inline cutPoints_t getCutPoints() const { return cutPoints; };
inline int get_depth() const { return depth; };
static inline string version() { return "1.1.2"; };
}; };
} }
#endif #endif

View File

@@ -2,7 +2,7 @@
[![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_mdlp&metric=alert_status)](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp) [![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_mdlp&metric=alert_status)](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_mdlp&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp) [![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_mdlp&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
# mdlp # <img src="logo.png" alt="logo" width="50"/> mdlp
Discretization algorithm based on the paper by Fayyad &amp; Irani [Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning](https://www.ijcai.org/Proceedings/93-2/Papers/022.pdf) Discretization algorithm based on the paper by Fayyad &amp; Irani [Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning](https://www.ijcai.org/Proceedings/93-2/Papers/022.pdf)

BIN
logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.0 MiB

View File

@@ -3,7 +3,7 @@ sonar.organization=rmontanana
# This is the name and version displayed in the SonarCloud UI. # This is the name and version displayed in the SonarCloud UI.
sonar.projectName=mdlp sonar.projectName=mdlp
sonar.projectVersion=1.0.2 sonar.projectVersion=1.1.3
# sonar.test.exclusions=tests/** # sonar.test.exclusions=tests/**
# sonar.tests=tests/ # sonar.tests=tests/
# sonar.coverage.exclusions=tests/**,sample/** # sonar.coverage.exclusions=tests/**,sample/**

View File

@@ -63,7 +63,7 @@ void ArffFiles::load(const string& fileName, bool classLast)
type = ""; type = "";
while (ss >> type_w) while (ss >> type_w)
type += type_w + " "; type += type_w + " ";
attributes.emplace_back(attribute, trim(type)); attributes.emplace_back(trim(attribute), trim(type));
continue; continue;
} }
if (line[0] == '@') { if (line[0] == '@') {
@@ -111,8 +111,8 @@ void ArffFiles::generateDataset(bool classLast)
string ArffFiles::trim(const string& source) string ArffFiles::trim(const string& source)
{ {
string s(source); string s(source);
s.erase(0, s.find_first_not_of(" \n\r\t")); s.erase(0, s.find_first_not_of(" '\n\r\t"));
s.erase(s.find_last_not_of(" \n\r\t") + 1); s.erase(s.find_last_not_of(" '\n\r\t") + 1);
return s; return s;
} }

351
tests/BinDisc_unittest.cpp Normal file
View File

@@ -0,0 +1,351 @@
#include <fstream>
#include <string>
#include <iostream>
#include "gtest/gtest.h"
#include "ArffFiles.h"
#include "../BinDisc.h"
namespace mdlp {
const float margin = 1e-4;
static std::string set_data_path()
{
std::string path = "../datasets/";
std::ifstream file(path + "iris.arff");
if (file.is_open()) {
file.close();
return path;
}
return "../../tests/datasets/";
}
const std::string data_path = set_data_path();
class TestBinDisc3U : public BinDisc, public testing::Test {
public:
TestBinDisc3U(int n_bins = 3) : BinDisc(n_bins, strategy_t::UNIFORM) {};
};
class TestBinDisc3Q : public BinDisc, public testing::Test {
public:
TestBinDisc3Q(int n_bins = 3) : BinDisc(n_bins, strategy_t::QUANTILE) {};
};
class TestBinDisc4U : public BinDisc, public testing::Test {
public:
TestBinDisc4U(int n_bins = 4) : BinDisc(n_bins, strategy_t::UNIFORM) {};
};
class TestBinDisc4Q : public BinDisc, public testing::Test {
public:
TestBinDisc4Q(int n_bins = 4) : BinDisc(n_bins, strategy_t::QUANTILE) {};
};
TEST_F(TestBinDisc3U, Easy3BinsUniform)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_NEAR(3.66667, cuts[0], margin);
EXPECT_NEAR(6.33333, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
EXPECT_EQ(3, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc3Q, Easy3BinsQuantile)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_NEAR(3.666667, cuts[0], margin);
EXPECT_NEAR(6.333333, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
EXPECT_EQ(3, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc3U, X10BinsUniform)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4.0, cuts[0]);
EXPECT_EQ(7.0, cuts[1]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
EXPECT_EQ(3, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc3Q, X10BinsQuantile)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts[0]);
EXPECT_EQ(7, cuts[1]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
EXPECT_EQ(3, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc3U, X11BinsUniform)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_NEAR(4.33333, cuts[0], margin);
EXPECT_NEAR(7.66667, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
EXPECT_EQ(3, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc3U, X11BinsQuantile)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_NEAR(4.33333, cuts[0], margin);
EXPECT_NEAR(7.66667, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
EXPECT_EQ(3, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc3U, ConstantUniform)
{
samples_t X = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
EXPECT_EQ(1, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 0, 0 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc3Q, ConstantQuantile)
{
samples_t X = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
EXPECT_EQ(1, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 0, 0 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc3U, EmptyUniform)
{
samples_t X = {};
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
EXPECT_EQ(1, cuts.size());
}
TEST_F(TestBinDisc3Q, EmptyQuantile)
{
samples_t X = {};
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
EXPECT_EQ(1, cuts.size());
}
TEST(TestBinDisc3, ExceptionNumberBins)
{
EXPECT_THROW(BinDisc(2), std::invalid_argument);
}
TEST_F(TestBinDisc3U, EasyRepeated)
{
samples_t X = { 3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_NEAR(1.66667, cuts[0], margin);
EXPECT_NEAR(2.33333, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
EXPECT_EQ(3, cuts.size());
auto labels = transform(X);
labels_t expected = { 2, 0, 0, 2, 0, 0, 2, 0, 0 };
EXPECT_EQ(expected, labels);
EXPECT_EQ(3.0, X[0]); // X is not modified
}
TEST_F(TestBinDisc3Q, EasyRepeated)
{
samples_t X = { 3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
std::cout << "cuts: ";
for (auto cut : cuts) {
std::cout << cut << " ";
}
std::cout << std::endl;
std::cout << std::string(80, '-') << std::endl;
EXPECT_NEAR(1.66667, cuts[0], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[1]);
EXPECT_EQ(2, cuts.size());
auto labels = transform(X);
labels_t expected = { 1, 0, 0, 1, 0, 0, 1, 0, 0 };
EXPECT_EQ(expected, labels);
EXPECT_EQ(3.0, X[0]); // X is not modified
}
TEST_F(TestBinDisc4U, Easy4BinsUniform)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(3.75, cuts[0]);
EXPECT_EQ(6.5, cuts[1]);
EXPECT_EQ(9.25, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
EXPECT_EQ(4, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4Q, Easy4BinsQuantile)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(3.75, cuts[0]);
EXPECT_EQ(6.5, cuts[1]);
EXPECT_EQ(9.25, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
EXPECT_EQ(4, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4U, X13BinsUniform)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4.0, cuts[0]);
EXPECT_EQ(7.0, cuts[1]);
EXPECT_EQ(10.0, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
EXPECT_EQ(4, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4Q, X13BinsQuantile)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4.0, cuts[0]);
EXPECT_EQ(7.0, cuts[1]);
EXPECT_EQ(10.0, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
EXPECT_EQ(4, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4U, X14BinsUniform)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4.25, cuts[0]);
EXPECT_EQ(7.5, cuts[1]);
EXPECT_EQ(10.75, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
EXPECT_EQ(4, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4Q, X14BinsQuantile)
{
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4.25, cuts[0]);
EXPECT_EQ(7.5, cuts[1]);
EXPECT_EQ(10.75, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
EXPECT_EQ(4, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4U, X15BinsUniform)
{
samples_t X = { 15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4.5, cuts[0]);
EXPECT_EQ(8, cuts[1]);
EXPECT_EQ(11.5, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
EXPECT_EQ(4, cuts.size());
auto labels = transform(X);
labels_t expected = { 3, 2, 3, 3, 1, 0, 3, 2, 2, 2, 1, 0, 0, 1, 0 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4Q, X15BinsQuantile)
{
samples_t X = { 15.0, 13.0, 12.0, 14.0, 6.0, 1.0, 8.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4.5, cuts[0]);
EXPECT_EQ(8, cuts[1]);
EXPECT_EQ(11.5, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
EXPECT_EQ(4, cuts.size());
auto labels = transform(X);
labels_t expected = { 3, 3, 3, 3, 1, 0, 2, 2, 2, 2, 1, 0, 0, 1, 0 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4U, RepeatedValuesUniform)
{
samples_t X = { 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0 };
// 0 1 2 3 4 5 6 7 8 9
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(1.0, cuts[0]);
EXPECT_EQ(2.0, cuts[1]);
EXPECT_EQ(3.0, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
EXPECT_EQ(4, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 1, 1, 1, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4Q, RepeatedValuesQuantile)
{
samples_t X = { 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0 };
// 0 1 2 3 4 5 6 7 8 9
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(2.0, cuts[0]);
EXPECT_EQ(3.0, cuts[1]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
EXPECT_EQ(3, cuts.size());
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 2, 2, 2, 2 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4U, irisUniform)
{
ArffFiles file;
file.load(data_path + "iris.arff", true);
vector<samples_t>& X = file.getX();
fit(X[0]);
auto Xt = transform(X[0]);
labels_t expected = { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 2, 1, 2, 1, 2, 0, 2, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 3, 2, 2, 3, 0, 3, 2, 3, 2, 2, 2, 1, 1, 2, 2, 3, 3, 1, 2, 1, 3, 2, 2, 3, 2, 1, 2, 3, 3, 3, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
EXPECT_EQ(expected, Xt);
}
TEST_F(TestBinDisc4Q, irisQuantile)
{
ArffFiles file;
file.load(data_path + "iris.arff", true);
vector<samples_t>& X = file.getX();
fit(X[0]);
auto Xt = transform(X[0]);
labels_t expected = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
EXPECT_EQ(expected, Xt);
}
}

View File

@@ -1,3 +1,4 @@
cmake_minimum_required(VERSION 3.20)
set(CMAKE_CXX_STANDARD 11) set(CMAKE_CXX_STANDARD 11)
include(FetchContent) include(FetchContent)
@@ -16,14 +17,18 @@ enable_testing()
add_executable(Metrics_unittest ../Metrics.cpp Metrics_unittest.cpp) add_executable(Metrics_unittest ../Metrics.cpp Metrics_unittest.cpp)
add_executable(FImdlp_unittest ../CPPFImdlp.cpp ArffFiles.cpp ../Metrics.cpp FImdlp_unittest.cpp) add_executable(FImdlp_unittest ../CPPFImdlp.cpp ArffFiles.cpp ../Metrics.cpp FImdlp_unittest.cpp)
add_executable(BinDisc_unittest ../BinDisc.cpp ArffFiles.cpp BinDisc_unittest.cpp)
target_link_libraries(Metrics_unittest GTest::gtest_main) target_link_libraries(Metrics_unittest GTest::gtest_main)
target_link_libraries(FImdlp_unittest GTest::gtest_main) target_link_libraries(FImdlp_unittest GTest::gtest_main)
target_link_libraries(BinDisc_unittest GTest::gtest_main)
target_compile_options(Metrics_unittest PRIVATE --coverage) target_compile_options(Metrics_unittest PRIVATE --coverage)
target_compile_options(FImdlp_unittest PRIVATE --coverage) target_compile_options(FImdlp_unittest PRIVATE --coverage)
target_compile_options(BinDisc_unittest PRIVATE --coverage)
target_link_options(Metrics_unittest PRIVATE --coverage) target_link_options(Metrics_unittest PRIVATE --coverage)
target_link_options(FImdlp_unittest PRIVATE --coverage) target_link_options(FImdlp_unittest PRIVATE --coverage)
target_link_options(BinDisc_unittest PRIVATE --coverage)
include(GoogleTest) include(GoogleTest)
gtest_discover_tests(Metrics_unittest) gtest_discover_tests(Metrics_unittest)
gtest_discover_tests(FImdlp_unittest) gtest_discover_tests(FImdlp_unittest)
gtest_discover_tests(BinDisc_unittest)

View File

@@ -15,11 +15,11 @@ throw; \
, etype) , etype)
namespace mdlp { namespace mdlp {
class TestFImdlp: public CPPFImdlp, public testing::Test { class TestFImdlp : public CPPFImdlp, public testing::Test {
public: public:
precision_t precision = 0.000001f; precision_t precision = 0.000001f;
TestFImdlp(): CPPFImdlp() {} TestFImdlp() : CPPFImdlp() {}
string data_path; string data_path;
@@ -329,4 +329,26 @@ namespace mdlp {
} }
} }
TEST_F(TestFImdlp, TransformTest)
{
labels_t expected = {
5, 3, 4, 4, 5, 5, 5, 5, 2, 4, 5, 5, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5,
5, 4, 5, 3, 5, 5, 5, 4, 4, 5, 5, 5, 4, 4, 5, 4, 3, 5, 5, 0, 4, 5,
5, 3, 5, 4, 5, 4, 4, 4, 4, 0, 1, 1, 4, 0, 2, 0, 0, 3, 0, 2, 2, 4,
3, 0, 0, 0, 4, 1, 0, 1, 2, 3, 1, 3, 2, 0, 0, 0, 0, 0, 3, 5, 4, 0,
3, 0, 0, 3, 0, 0, 0, 3, 2, 2, 0, 1, 4, 0, 3, 2, 3, 3, 0, 2, 0, 5,
4, 0, 3, 0, 1, 4, 3, 5, 0, 0, 4, 1, 1, 0, 4, 4, 1, 3, 1, 3, 1, 5,
1, 1, 0, 3, 5, 4, 3, 4, 4, 4, 0, 4, 4, 3, 0, 3, 5, 3
};
ArffFiles file;
file.load(data_path + "iris.arff", true);
vector<samples_t>& X = file.getX();
labels_t& y = file.getY();
fit(X[1], y);
auto computed = transform(X[1]);
EXPECT_EQ(computed.size(), expected.size());
for (unsigned long i = 0; i < computed.size(); i++) {
EXPECT_EQ(computed[i], expected[i]);
}
}
} }

View File

@@ -1,3 +1,4 @@
#!/bin/bash
if [ -d build ] ; then if [ -d build ] ; then
rm -fr build rm -fr build
fi fi
@@ -9,12 +10,9 @@ cmake --build build
cd build cd build
ctest --output-on-failure ctest --output-on-failure
cd .. cd ..
if [ ! -d gcovr-report ] ; then mkdir gcovr-report
mkdir gcovr-report
fi
rm -fr gcovr-report/* 2>/dev/null
#lcov --capture --directory ./ --output-file lcoverage/main_coverage.info #lcov --capture --directory ./ --output-file lcoverage/main_coverage.info
#lcov --remove lcoverage/main_coverage.info 'v1/*' '/Applications/*' '*/tests/*' --output-file lcoverage/main_coverage.info -q #lcov --remove lcoverage/main_coverage.info 'v1/*' '/Applications/*' '*/tests/*' --output-file lcoverage/main_coverage.info -q
#lcov --list lcoverage/main_coverage.info #lcov --list lcoverage/main_coverage.info
cd .. cd ..
gcovr --gcov-filter "CPPFImdlp.cpp" --gcov-filter "Metrics.cpp" --txt --sonarqube=tests/gcovr-report/coverage.xml gcovr --gcov-filter "CPPFImdlp.cpp" --gcov-filter "Metrics.cpp" --gcov-filter "BinDisc.cpp" --txt --sonarqube=tests/gcovr-report/coverage.xml --exclude-noncode-lines

404
tests/testKbins.py Normal file
View File

@@ -0,0 +1,404 @@
from scipy.io.arff import loadarff
from sklearn.preprocessing import KBinsDiscretizer
def test(clf, X, expected, title):
X = [[x] for x in X]
clf.fit(X)
computed = [int(x[0]) for x in clf.transform(X)]
print(f"{title}")
print(f"{computed=}")
print(f"{expected=}")
assert computed == expected
print("-" * 80)
# Test Uniform Strategy
clf3u = KBinsDiscretizer(
n_bins=3, encode="ordinal", strategy="uniform", subsample=200_000
)
clf3q = KBinsDiscretizer(
n_bins=3, encode="ordinal", strategy="quantile", subsample=200_000
)
clf4u = KBinsDiscretizer(
n_bins=4, encode="ordinal", strategy="uniform", subsample=200_000
)
clf4q = KBinsDiscretizer(
n_bins=4, encode="ordinal", strategy="quantile", subsample=200_000
)
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2]
test(clf3u, X, labels, title="Easy3BinsUniform")
test(clf3q, X, labels, title="Easy3BinsQuantile")
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2, 2]
# En C++ se obtiene el mismo resultado en ambos, no como aquí
labels2 = [0, 0, 0, 1, 1, 1, 1, 2, 2, 2]
test(clf3u, X, labels, title="X10BinsUniform")
test(clf3q, X, labels2, title="X10BinsQuantile")
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]
labels = [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2]
# En C++ se obtiene el mismo resultado en ambos, no como aquí
# labels2 = [0, 0, 0, 1, 1, 1, 1, 2, 2, 2]
test(clf3u, X, labels, title="X11BinsUniform")
test(clf3q, X, labels, title="X11BinsQuantile")
#
X = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
labels = [0, 0, 0, 0, 0, 0]
test(clf3u, X, labels, title="ConstantUniform")
test(clf3q, X, labels, title="ConstantQuantile")
#
X = [3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]
labels = [2, 0, 0, 2, 0, 0, 2, 0, 0]
labels2 = [1, 0, 0, 1, 0, 0, 1, 0, 0] # igual que en C++
test(clf3u, X, labels, title="EasyRepeatedUniform")
test(clf3q, X, labels2, title="EasyRepeatedQuantile")
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]
test(clf4u, X, labels, title="Easy4BinsUniform")
test(clf4q, X, labels, title="Easy4BinsQuantile")
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3]
test(clf4u, X, labels, title="X13BinsUniform")
test(clf4q, X, labels, title="X13BinsQuantile")
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
labels = [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3]
test(clf4u, X, labels, title="X14BinsUniform")
test(clf4q, X, labels, title="X14BinsQuantile")
#
X1 = [15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
X2 = [15.0, 13.0, 12.0, 14.0, 6.0, 1.0, 8.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
labels1 = [3, 2, 3, 3, 1, 0, 3, 2, 2, 2, 1, 0, 0, 1, 0]
labels2 = [3, 3, 3, 3, 1, 0, 2, 2, 2, 2, 1, 0, 0, 1, 0]
test(clf4u, X1, labels1, title="X15BinsUniform")
test(clf4q, X2, labels2, title="X15BinsQuantile")
#
X = [0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0]
labels = [0, 1, 1, 1, 2, 2, 3, 3, 3, 3]
test(clf4u, X, labels, title="RepeatedValuesUniform")
test(clf4q, X, labels, title="RepeatedValuesQuantile")
print(f"Uniform {clf4u.bin_edges_=}")
print(f"Quaintile {clf4q.bin_edges_=}")
print("-" * 80)
#
data, meta = loadarff("tests/datasets/iris.arff")
labelsu = [
0,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
1,
1,
1,
0,
1,
0,
1,
0,
0,
0,
0,
0,
0,
1,
1,
0,
0,
1,
1,
1,
0,
0,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
3,
2,
2,
1,
2,
1,
2,
0,
2,
1,
0,
1,
1,
2,
1,
2,
1,
1,
2,
1,
1,
2,
2,
2,
2,
2,
2,
2,
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
1,
1,
1,
2,
1,
0,
1,
1,
1,
2,
0,
1,
2,
1,
3,
2,
2,
3,
0,
3,
2,
3,
2,
2,
2,
1,
1,
2,
2,
3,
3,
1,
2,
1,
3,
2,
2,
3,
2,
2,
2,
3,
3,
3,
2,
2,
2,
3,
2,
2,
1,
2,
2,
2,
1,
2,
2,
2,
2,
2,
2,
1,
]
labelsq = [
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
2,
1,
1,
1,
1,
1,
1,
1,
0,
1,
0,
0,
0,
1,
1,
0,
0,
1,
1,
1,
0,
0,
1,
0,
0,
1,
0,
0,
0,
0,
1,
0,
1,
0,
1,
0,
3,
3,
3,
1,
3,
1,
2,
0,
3,
1,
0,
2,
2,
2,
1,
3,
1,
2,
2,
1,
2,
2,
2,
2,
3,
3,
3,
3,
2,
1,
1,
1,
2,
2,
1,
2,
3,
2,
1,
1,
1,
2,
2,
0,
1,
1,
1,
2,
1,
1,
2,
2,
3,
2,
3,
3,
0,
3,
3,
3,
3,
3,
3,
1,
2,
3,
3,
3,
3,
2,
3,
1,
3,
2,
3,
3,
2,
2,
3,
3,
3,
3,
3,
2,
2,
3,
2,
3,
2,
3,
3,
3,
2,
3,
3,
3,
2,
3,
2,
2,
]
test(clf4u, data["sepallength"], labelsu, title="IrisUniform")
test(clf4q, data["sepallength"], labelsq, title="IrisQuantile")
# print("Labels")
# print(labels)
# print("Expected")
# print(expected)
# for i in range(len(labels)):
# if labels[i] != expected[i]:
# print(f"Error at {i} {labels[i]} != {expected[i]}")

View File

@@ -8,11 +8,11 @@
using namespace std; using namespace std;
namespace mdlp { namespace mdlp {
typedef float precision_t; typedef float precision_t;
typedef vector<precision_t> samples_t; typedef std::vector<precision_t> samples_t;
typedef vector<int> labels_t; typedef std::vector<int> labels_t;
typedef vector<size_t> indices_t; typedef std::vector<size_t> indices_t;
typedef vector<precision_t> cutPoints_t; typedef std::vector<precision_t> cutPoints_t;
typedef map<pair<int, int>, precision_t> cacheEnt_t; typedef std::map<std::pair<int, int>, precision_t> cacheEnt_t;
typedef map<tuple<int, int, int>, precision_t> cacheIg_t; typedef std::map<std::tuple<int, int, int>, precision_t> cacheIg_t;
} }
#endif #endif