mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-15 23:45:57 +00:00
Fix tests
This commit is contained in:
@@ -153,20 +153,12 @@ namespace mdlp {
|
||||
TEST_F(TestBinDisc3U, EmptyUniform)
|
||||
{
|
||||
samples_t X = {};
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
ASSERT_EQ(2, cuts.size());
|
||||
EXPECT_NEAR(0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(0, cuts.at(1), margin);
|
||||
EXPECT_THROW(fit(X), std::invalid_argument);
|
||||
}
|
||||
TEST_F(TestBinDisc3Q, EmptyQuantile)
|
||||
{
|
||||
samples_t X = {};
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
ASSERT_EQ(2, cuts.size());
|
||||
EXPECT_NEAR(0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(0, cuts.at(1), margin);
|
||||
EXPECT_THROW(fit(X), std::invalid_argument);
|
||||
}
|
||||
TEST(TestBinDisc3, ExceptionNumberBins)
|
||||
{
|
||||
@@ -406,6 +398,6 @@ namespace mdlp {
|
||||
EXPECT_NEAR(exp.cutpoints_.at(i), cuts.at(i), margin);
|
||||
}
|
||||
}
|
||||
std::cout << "* Number of experiments tested: " << num << std::endl;
|
||||
// std::cout << "* Number of experiments tested: " << num << std::endl;
|
||||
}
|
||||
}
|
||||
|
@@ -17,13 +17,13 @@ namespace mdlp {
|
||||
const float margin = 1e-4;
|
||||
static std::string set_data_path()
|
||||
{
|
||||
std::string path = "datasets/";
|
||||
std::string path = "tests/datasets/";
|
||||
std::ifstream file(path + "iris.arff");
|
||||
if (file.is_open()) {
|
||||
file.close();
|
||||
return path;
|
||||
}
|
||||
return "tests/datasets/";
|
||||
return "datasets/";
|
||||
}
|
||||
const std::string data_path = set_data_path();
|
||||
const labels_t iris_quantile = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
|
||||
@@ -32,7 +32,6 @@ namespace mdlp {
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
auto version = disc->version();
|
||||
delete disc;
|
||||
std::cout << "Version computed: " << version;
|
||||
EXPECT_EQ("2.1.0", version);
|
||||
}
|
||||
TEST(Discretizer, BinIrisUniform)
|
||||
|
@@ -64,7 +64,7 @@ namespace mdlp {
|
||||
{
|
||||
EXPECT_EQ(computed.size(), expected.size());
|
||||
for (unsigned long i = 0; i < computed.size(); i++) {
|
||||
cout << "(" << computed[i] << ", " << expected[i] << ") ";
|
||||
// cout << "(" << computed[i] << ", " << expected[i] << ") ";
|
||||
EXPECT_NEAR(computed[i], expected[i], precision);
|
||||
}
|
||||
}
|
||||
@@ -76,7 +76,7 @@ namespace mdlp {
|
||||
X = X_;
|
||||
y = y_;
|
||||
indices = sortIndices(X, y);
|
||||
cout << "* " << title << endl;
|
||||
// cout << "* " << title << endl;
|
||||
result = valueCutPoint(0, cut, 10);
|
||||
EXPECT_NEAR(result.first, midPoint, precision);
|
||||
EXPECT_EQ(result.second, limit);
|
||||
@@ -95,9 +95,9 @@ namespace mdlp {
|
||||
test.fit(X[feature], y);
|
||||
EXPECT_EQ(test.get_depth(), depths[feature]);
|
||||
auto computed = test.getCutPoints();
|
||||
cout << "Feature " << feature << ": ";
|
||||
// cout << "Feature " << feature << ": ";
|
||||
checkCutPoints(computed, expected[feature]);
|
||||
cout << endl;
|
||||
// cout << endl;
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -113,17 +113,16 @@ namespace mdlp {
|
||||
{
|
||||
X = { 1, 2, 3 };
|
||||
y = { 1, 2 };
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have the same size");
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have the same size: " + std::to_string(X.size()) + " != " + std::to_string(y.size()));
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, FitErrorMinLengtMaxDepth)
|
||||
TEST_F(TestFImdlp, FitErrorMinLength)
|
||||
{
|
||||
auto testLength = CPPFImdlp(2, 10, 0);
|
||||
auto testDepth = CPPFImdlp(3, 0, 0);
|
||||
X = { 1, 2, 3 };
|
||||
y = { 1, 2, 3 };
|
||||
EXPECT_THROW_WITH_MESSAGE(testLength.fit(X, y), invalid_argument, "min_length must be greater than 2");
|
||||
EXPECT_THROW_WITH_MESSAGE(testDepth.fit(X, y), invalid_argument, "max_depth must be greater than 0");
|
||||
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(2, 10, 0), invalid_argument, "min_length must be greater than 2");
|
||||
}
|
||||
TEST_F(TestFImdlp, FitErrorMaxDepth)
|
||||
{
|
||||
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(3, 0, 0), invalid_argument, "max_depth must be greater than 0");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, JoinFit)
|
||||
@@ -137,14 +136,16 @@ namespace mdlp {
|
||||
checkCutPoints(computed, expected);
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, FitErrorMinCutPoints)
|
||||
{
|
||||
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(3, 10, -1), invalid_argument, "proposed_cuts must be non-negative");
|
||||
}
|
||||
TEST_F(TestFImdlp, FitErrorMaxCutPoints)
|
||||
{
|
||||
auto testmin = CPPFImdlp(2, 10, -1);
|
||||
auto testmax = CPPFImdlp(3, 0, 200);
|
||||
X = { 1, 2, 3 };
|
||||
y = { 1, 2, 3 };
|
||||
EXPECT_THROW_WITH_MESSAGE(testmin.fit(X, y), invalid_argument, "wrong proposed num_cuts value");
|
||||
EXPECT_THROW_WITH_MESSAGE(testmax.fit(X, y), invalid_argument, "wrong proposed num_cuts value");
|
||||
auto test = CPPFImdlp(3, 1, 8);
|
||||
samples_t X_ = { 1, 2, 2, 3, 4, 2, 3 };
|
||||
labels_t y_ = { 0, 0, 1, 2, 3, 4, 5 };
|
||||
EXPECT_THROW_WITH_MESSAGE(test.fit(X_, y_), invalid_argument, "wrong proposed num_cuts value");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SortIndices)
|
||||
|
Reference in New Issue
Block a user