Add coypright header to sources

Fix coverage report
Add coverage badge to README
This commit is contained in:
2024-07-03 23:43:08 +02:00
parent fcbd05d842
commit cb3659b225
24 changed files with 213 additions and 37 deletions

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include "ArffFiles.h"
#include <fstream>
#include <sstream>

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#ifndef ARFFFILES_H
#define ARFFFILES_H

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include <fstream>
#include <string>
#include <iostream>

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include <fstream>
#include <string>
#include <iostream>
@@ -20,7 +26,7 @@ namespace mdlp {
return "../../tests/datasets/";
}
const std::string data_path = set_data_path();
const labels_t iris_quantile = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
TEST(Discretizer, Version)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
@@ -51,9 +57,42 @@ namespace mdlp {
auto y = labels_t();
disc->fit(X[0], y);
auto Xt = disc->transform(X[0]);
labels_t expected = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
delete disc;
EXPECT_EQ(expected, Xt);
EXPECT_EQ(iris_quantile, Xt);
}
TEST(Discretizer, BinIrisQuantileTorch)
{
ArffFiles file;
Discretizer* disc = new BinDisc(4, strategy_t::QUANTILE);
file.load(data_path + "iris.arff", true);
auto X = file.getX();
auto y = file.getY();
auto X_torch = torch::tensor(X[0], torch::kFloat32);
auto yt = torch::tensor(y, torch::kInt32);
disc->fit_t(X_torch, yt);
torch::Tensor Xt = disc->transform_t(X_torch);
delete disc;
EXPECT_EQ(iris_quantile.size(), Xt.size(0));
for (int i = 0; i < iris_quantile.size(); ++i) {
EXPECT_EQ(iris_quantile.at(i), Xt[i].item<int>());
}
}
TEST(Discretizer, BinIrisQuantileTorchFit_transform)
{
ArffFiles file;
Discretizer* disc = new BinDisc(4, strategy_t::QUANTILE);
file.load(data_path + "iris.arff", true);
auto X = file.getX();
auto y = file.getY();
auto X_torch = torch::tensor(X[0], torch::kFloat32);
auto yt = torch::tensor(y, torch::kInt32);
torch::Tensor Xt = disc->fit_transform_t(X_torch, yt);
delete disc;
EXPECT_EQ(iris_quantile.size(), Xt.size(0));
for (int i = 0; i < iris_quantile.size(); ++i) {
EXPECT_EQ(iris_quantile.at(i), Xt[i].item<int>());
}
}
TEST(Discretizer, FImdlpIris)

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#ifndef EXPERIMENTS_HPP
#define EXPERIMENTS_HPP
#include<sstream>

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include "gtest/gtest.h"
#include "../Metrics.h"
#include "../CPPFImdlp.h"

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include "gtest/gtest.h"
#include "../Metrics.h"

View File

@@ -1 +0,0 @@
---

View File

@@ -1,3 +0,0 @@
Start testing: Jul 03 18:09 CEST
----------------------------------------------------------
End testing: Jul 03 18:09 CEST

View File

@@ -1,15 +0,0 @@
#!/bin/bash
if [ -d build ] && [ "$1" != "run" ]; then
rm -fr build
fi
if [ -d gcovr-report ] ; then
rm -fr gcovr-report
fi
cmake -S . -B build -Wno-dev -DCMAKE_BUILD_TYPE=Debug -DCMAKE_CXX_FLAGS="--coverage" -DCMAKE_C_FLAGS="--coverage"
cmake --build build
cd build
ctest --output-on-failure -j 8
cd ..
mkdir gcovr-report
cd ..
gcovr --gcov-filter "CPPFImdlp.cpp" --gcov-filter "Metrics.cpp" --gcov-filter "BinDisc.cpp" --gcov-filter "Discretizer.cpp" --txt --sonarqube=tests/gcovr-report/coverage.xml --exclude-noncode-lines

View File

@@ -1,3 +1,9 @@
# ***************************************************************
# SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
# SPDX-FileType: SOURCE
# SPDX-License-Identifier: MIT
# ***************************************************************
import json
from sklearn.preprocessing import KBinsDiscretizer