mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-16 07:55:58 +00:00
Refactor tests
This commit is contained in:
@@ -4,6 +4,7 @@
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include "ArffFiles.h"
|
||||
|
||||
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
|
||||
try { \
|
||||
stmt; \
|
||||
@@ -14,30 +15,33 @@ throw; \
|
||||
, etype)
|
||||
|
||||
namespace mdlp {
|
||||
class TestFImdlp: public CPPFImdlp, public testing::Test {
|
||||
class TestFImdlp : public CPPFImdlp, public testing::Test {
|
||||
public:
|
||||
precision_t precision = 0.000001;
|
||||
TestFImdlp(): CPPFImdlp() {}
|
||||
precision_t precision = 0.000001f;
|
||||
|
||||
TestFImdlp() : CPPFImdlp() {}
|
||||
|
||||
string data_path;
|
||||
void SetUp()
|
||||
{
|
||||
X = { 4.7, 4.7, 4.7, 4.7, 4.8, 4.8, 4.8, 4.8, 4.9, 4.95, 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
|
||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
|
||||
void SetUp() override {
|
||||
X = {4.7f, 4.7f, 4.7f, 4.7f, 4.8f, 4.8f, 4.8f, 4.8f, 4.9f, 4.95f, 5.7f, 5.3f, 5.2f, 5.1f, 5.0f, 5.6f, 5.1f,
|
||||
6.0f, 5.1f, 5.9f};
|
||||
y = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2};
|
||||
fit(X, y);
|
||||
data_path = set_data_path();
|
||||
}
|
||||
string set_data_path()
|
||||
{
|
||||
|
||||
static string set_data_path() {
|
||||
string path = "../datasets/";
|
||||
ifstream file(path+"iris.arff");
|
||||
ifstream file(path + "iris.arff");
|
||||
if (file.is_open()) {
|
||||
file.close();
|
||||
return path;
|
||||
}
|
||||
return "../../tests/datasets/";
|
||||
}
|
||||
void checkSortedVector()
|
||||
{
|
||||
|
||||
void checkSortedVector() {
|
||||
indices_t testSortedIndices = sortIndices(X, y);
|
||||
precision_t prev = X[testSortedIndices[0]];
|
||||
for (unsigned long i = 0; i < X.size(); ++i) {
|
||||
@@ -46,26 +50,18 @@ namespace mdlp {
|
||||
prev = X[testSortedIndices[i]];
|
||||
}
|
||||
}
|
||||
void checkCutPoints(cutPoints_t& computed, cutPoints_t& expected)
|
||||
{
|
||||
|
||||
void checkCutPoints(cutPoints_t &computed, cutPoints_t &expected) const {
|
||||
EXPECT_EQ(computed.size(), expected.size());
|
||||
for (unsigned long i = 0; i < computed.size(); i++) {
|
||||
cout << "(" << computed[i] << ", " << expected[i] << ") ";
|
||||
EXPECT_NEAR(computed[i], expected[i], precision);
|
||||
}
|
||||
}
|
||||
template<typename T, typename A>
|
||||
void checkVectors(std::vector<T, A> const& expected, std::vector<T, A> const& computed)
|
||||
{
|
||||
ASSERT_EQ(expected.size(), computed.size());
|
||||
for (auto i = 0; i < expected.size(); i++) {
|
||||
EXPECT_NEAR(expected[i], computed[i], precision);
|
||||
}
|
||||
}
|
||||
bool test_result(samples_t& X_, size_t cut, float midPoint, size_t limit, string title)
|
||||
{
|
||||
|
||||
bool test_result(const samples_t &X_, size_t cut, float midPoint, size_t limit, const string &title) {
|
||||
pair<precision_t, size_t> result;
|
||||
labels_t y_ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
||||
labels_t y_ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
X = X_;
|
||||
y = y_;
|
||||
indices = sortIndices(X, y);
|
||||
@@ -75,12 +71,13 @@ namespace mdlp {
|
||||
EXPECT_EQ(result.second, limit);
|
||||
return true;
|
||||
}
|
||||
void test_dataset(CPPFImdlp& test, string filename, vector<cutPoints_t>& expected, int depths[])
|
||||
{
|
||||
|
||||
void test_dataset(CPPFImdlp &test, const string &filename, vector<cutPoints_t> &expected,
|
||||
vector<int> &depths) const {
|
||||
ArffFiles file;
|
||||
file.load(data_path + filename + ".arff", true);
|
||||
vector<samples_t>& X = file.getX();
|
||||
labels_t& y = file.getY();
|
||||
vector<samples_t> &X = file.getX();
|
||||
labels_t &y = file.getY();
|
||||
auto attributes = file.getAttributes();
|
||||
for (auto feature = 0; feature < attributes.size(); feature++) {
|
||||
test.fit(X[feature], y);
|
||||
@@ -92,202 +89,206 @@ namespace mdlp {
|
||||
}
|
||||
}
|
||||
};
|
||||
TEST_F(TestFImdlp, FitErrorEmptyDataset)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, FitErrorEmptyDataset) {
|
||||
X = samples_t();
|
||||
y = labels_t();
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have at least one element");
|
||||
}
|
||||
TEST_F(TestFImdlp, FitErrorDifferentSize)
|
||||
{
|
||||
X = { 1, 2, 3 };
|
||||
y = { 1, 2 };
|
||||
|
||||
TEST_F(TestFImdlp, FitErrorDifferentSize) {
|
||||
X = {1, 2, 3};
|
||||
y = {1, 2};
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have the same size");
|
||||
}
|
||||
TEST_F(TestFImdlp, FitErrorMinLengtMaxDepth)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, FitErrorMinLengtMaxDepth) {
|
||||
auto testLength = CPPFImdlp(2, 10, 0);
|
||||
auto testDepth = CPPFImdlp(3, 0, 0);
|
||||
X = { 1, 2, 3 };
|
||||
y = { 1, 2, 3 };
|
||||
X = {1, 2, 3};
|
||||
y = {1, 2, 3};
|
||||
EXPECT_THROW_WITH_MESSAGE(testLength.fit(X, y), invalid_argument, "min_length must be greater than 2");
|
||||
EXPECT_THROW_WITH_MESSAGE(testDepth.fit(X, y), invalid_argument, "max_depth must be greater than 0");
|
||||
}
|
||||
TEST_F(TestFImdlp, FitErrorMaxCutPoints)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, FitErrorMaxCutPoints) {
|
||||
auto testmin = CPPFImdlp(2, 10, -1);
|
||||
auto testmax = CPPFImdlp(3, 0, 200);
|
||||
X = { 1, 2, 3 };
|
||||
y = { 1, 2, 3 };
|
||||
X = {1, 2, 3};
|
||||
y = {1, 2, 3};
|
||||
EXPECT_THROW_WITH_MESSAGE(testmin.fit(X, y), invalid_argument, "wrong proposed num_cuts value");
|
||||
EXPECT_THROW_WITH_MESSAGE(testmax.fit(X, y), invalid_argument, "wrong proposed num_cuts value");
|
||||
}
|
||||
TEST_F(TestFImdlp, SortIndices)
|
||||
{
|
||||
X = { 5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9 };
|
||||
y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
indices = { 4, 3, 6, 8, 2, 1, 5, 0, 9, 7 };
|
||||
|
||||
TEST_F(TestFImdlp, SortIndices) {
|
||||
X = {5.7f, 5.3f, 5.2f, 5.1f, 5.0f, 5.6f, 5.1f, 6.0f, 5.1f, 5.9f};
|
||||
y = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2};
|
||||
indices = {4, 3, 6, 8, 2, 1, 5, 0, 9, 7};
|
||||
checkSortedVector();
|
||||
X = { 5.77, 5.88, 5.99 };
|
||||
y = { 1, 2, 1 };
|
||||
indices = { 0, 1, 2 };
|
||||
X = {5.77f, 5.88f, 5.99f};
|
||||
y = {1, 2, 1};
|
||||
indices = {0, 1, 2};
|
||||
checkSortedVector();
|
||||
X = { 5.33, 5.22, 5.11 };
|
||||
y = { 1, 2, 1 };
|
||||
indices = { 2, 1, 0 };
|
||||
X = {5.33f, 5.22f, 5.11f};
|
||||
y = {1, 2, 1};
|
||||
indices = {2, 1, 0};
|
||||
checkSortedVector();
|
||||
X = { 5.33, 5.22, 5.33 };
|
||||
y = { 2, 2, 1 };
|
||||
indices = { 1, 2, 0 };
|
||||
X = {5.33f, 5.22f, 5.33f};
|
||||
y = {2, 2, 1};
|
||||
indices = {1, 2, 0};
|
||||
}
|
||||
TEST_F(TestFImdlp, TestShortDatasets)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, TestShortDatasets) {
|
||||
vector<precision_t> computed;
|
||||
X = { 1 };
|
||||
y = { 1 };
|
||||
X = {1};
|
||||
y = {1};
|
||||
fit(X, y);
|
||||
computed = getCutPoints();
|
||||
EXPECT_EQ(computed.size(), 0);
|
||||
X = { 1, 3 };
|
||||
y = { 1, 2 };
|
||||
X = {1, 3};
|
||||
y = {1, 2};
|
||||
fit(X, y);
|
||||
computed = getCutPoints();
|
||||
EXPECT_EQ(computed.size(), 0);
|
||||
X = { 2, 4 };
|
||||
y = { 1, 2 };
|
||||
X = {2, 4};
|
||||
y = {1, 2};
|
||||
fit(X, y);
|
||||
computed = getCutPoints();
|
||||
EXPECT_EQ(computed.size(), 0);
|
||||
X = { 1, 2, 3 };
|
||||
y = { 1, 2, 2 };
|
||||
X = {1, 2, 3};
|
||||
y = {1, 2, 2};
|
||||
fit(X, y);
|
||||
computed = getCutPoints();
|
||||
EXPECT_EQ(computed.size(), 1);
|
||||
EXPECT_NEAR(computed[0], 1.5, precision);
|
||||
}
|
||||
TEST_F(TestFImdlp, TestArtificialDataset)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, TestArtificialDataset) {
|
||||
fit(X, y);
|
||||
cutPoints_t expected = { 5.05 };
|
||||
cutPoints_t expected = {5.05f};
|
||||
vector<precision_t> computed = getCutPoints();
|
||||
int expectedSize = expected.size();
|
||||
EXPECT_EQ(computed.size(), expected.size());
|
||||
for (unsigned long i = 0; i < computed.size(); i++) {
|
||||
EXPECT_NEAR(computed[i], expected[i], precision);
|
||||
}
|
||||
}
|
||||
TEST_F(TestFImdlp, TestIris)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, TestIris) {
|
||||
vector<cutPoints_t> expected = {
|
||||
{ 5.45, 5.75 },
|
||||
{ 2.75, 2.85, 2.95, 3.05, 3.35 },
|
||||
{ 2.45, 4.75, 5.05 },
|
||||
{ 0.8, 1.75 }
|
||||
{5.45f, 5.75f},
|
||||
{2.75f, 2.85f, 2.95f, 3.05f, 3.35f},
|
||||
{2.45f, 4.75f, 5.05f},
|
||||
{0.8f, 1.75f}
|
||||
};
|
||||
int depths[] = { 3, 5, 5, 5 };
|
||||
vector<int> depths = {3, 5, 4, 3};
|
||||
auto test = CPPFImdlp();
|
||||
//test_dataset(test, "iris.arff", expected, depths);
|
||||
test_dataset(test, "iris", expected, depths);
|
||||
}
|
||||
TEST_F(TestFImdlp, ComputeCutPointsGCase)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, ComputeCutPointsGCase) {
|
||||
cutPoints_t expected;
|
||||
expected = { 1.5 };
|
||||
samples_t X_ = { 0, 1, 2, 2, 2 };
|
||||
labels_t y_ = { 1, 1, 1, 2, 2 };
|
||||
expected = {1.5};
|
||||
samples_t X_ = {0, 1, 2, 2, 2};
|
||||
labels_t y_ = {1, 1, 1, 2, 2};
|
||||
fit(X_, y_);
|
||||
auto computed = getCutPoints();
|
||||
checkCutPoints(computed, expected);
|
||||
}
|
||||
TEST_F(TestFImdlp, ValueCutPoint)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, ValueCutPoint) {
|
||||
// Case titles as stated in the doc
|
||||
samples_t X1a{ 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0 };
|
||||
test_result(X1a, 6, 7.3 / 2, 6, "1a");
|
||||
samples_t X2a = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
||||
test_result(X2a, 6, 7.1 / 2, 4, "2a");
|
||||
samples_t X2b = { 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
||||
test_result(X2b, 6, 7.5 / 2, 7, "2b");
|
||||
samples_t X3a = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
||||
test_result(X3a, 4, 7.1 / 2, 4, "3a");
|
||||
samples_t X3b = { 3.1, 3.2, 3.3, 3.4, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7 };
|
||||
test_result(X3b, 4, 7.1 / 2, 4, "3b");
|
||||
samples_t X4a = { 3.1, 3.2, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.9, 4.0 };
|
||||
test_result(X4a, 4, 6.9 / 2, 2, "4a");
|
||||
samples_t X4b = { 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.8, 3.9, 4.0 };
|
||||
test_result(X4b, 4, 7.5 / 2, 7, "4b");
|
||||
samples_t X4c = { 3.1, 3.2, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7 };
|
||||
test_result(X4c, 4, 6.9 / 2, 2, "4c");
|
||||
samples_t X1a{3.1f, 3.2f, 3.3f, 3.4f, 3.5f, 3.6f, 3.7f, 3.8f, 3.9f, 4.0f};
|
||||
test_result(X1a, 6, 7.3f / 2, 6, "1a");
|
||||
samples_t X2a = {3.1f, 3.2f, 3.3f, 3.4f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f};
|
||||
test_result(X2a, 6, 7.1f / 2, 4, "2a");
|
||||
samples_t X2b = {3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f};
|
||||
test_result(X2b, 6, 7.5f / 2, 7, "2b");
|
||||
samples_t X3a = {3.f, 3.2f, 3.3f, 3.4f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f};
|
||||
test_result(X3a, 4, 7.1f / 2, 4, "3a");
|
||||
samples_t X3b = {3.1f, 3.2f, 3.3f, 3.4f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f};
|
||||
test_result(X3b, 4, 7.1f / 2, 4, "3b");
|
||||
samples_t X4a = {3.1f, 3.2f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.9f, 4.0f};
|
||||
test_result(X4a, 4, 6.9f / 2, 2, "4a");
|
||||
samples_t X4b = {3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.8f, 3.9f, 4.0f};
|
||||
test_result(X4b, 4, 7.5f / 2, 7, "4b");
|
||||
samples_t X4c = {3.1f, 3.2f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f, 3.7f};
|
||||
test_result(X4c, 4, 6.9f / 2, 2, "4c");
|
||||
}
|
||||
TEST_F(TestFImdlp, MaxDepth)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, MaxDepth) {
|
||||
// Set max_depth to 1
|
||||
auto test = CPPFImdlp(3, 1, 0);
|
||||
vector<cutPoints_t> expected = {
|
||||
{ 5.45 },
|
||||
{ 3.35 },
|
||||
{ 2.45 },
|
||||
{0.8 }
|
||||
{5.45f},
|
||||
{3.35f},
|
||||
{2.45f},
|
||||
{0.8f}
|
||||
};
|
||||
int depths[] = { 1, 1, 1, 1 };
|
||||
vector<int> depths = {1, 1, 1, 1};
|
||||
test_dataset(test, "iris", expected, depths);
|
||||
}
|
||||
TEST_F(TestFImdlp, MinLength)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, MinLength) {
|
||||
auto test = CPPFImdlp(75, 100, 0);
|
||||
// Set min_length to 75
|
||||
vector<cutPoints_t> expected = {
|
||||
{ 5.45, 5.75 },
|
||||
{ 2.85, 3.35 },
|
||||
{ 2.45, 4.75 },
|
||||
{ 0.8, 1.75 }
|
||||
{5.45f, 5.75f},
|
||||
{2.85f, 3.35f},
|
||||
{2.45f, 4.75f},
|
||||
{0.8f, 1.75f}
|
||||
};
|
||||
int depths[] = { 3, 2, 2, 2 };
|
||||
vector<int> depths = {3, 2, 2, 2};
|
||||
test_dataset(test, "iris", expected, depths);
|
||||
}
|
||||
TEST_F(TestFImdlp, MinLengthMaxDepth)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, MinLengthMaxDepth) {
|
||||
// Set min_length to 75
|
||||
auto test = CPPFImdlp(75, 2, 0);
|
||||
vector<cutPoints_t> expected = {
|
||||
{ 5.45, 5.75 },
|
||||
{ 2.85, 3.35 },
|
||||
{ 2.45, 4.75 },
|
||||
{ 0.8, 1.75 }
|
||||
{5.45f, 5.75f},
|
||||
{2.85f, 3.35f},
|
||||
{2.45f, 4.75f},
|
||||
{0.8f, 1.75f}
|
||||
};
|
||||
int depths[] = { 2, 2, 2, 2 };
|
||||
vector<int> depths = {2, 2, 2, 2};
|
||||
test_dataset(test, "iris", expected, depths);
|
||||
}
|
||||
TEST_F(TestFImdlp, MaxCutPointsInteger)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, MaxCutPointsInteger) {
|
||||
// Set min_length to 75
|
||||
auto test = CPPFImdlp(75, 2, 1);
|
||||
vector<cutPoints_t> expected = {
|
||||
{ 5.45 },
|
||||
{ 3.35 },
|
||||
{ 2.45 },
|
||||
{ 0.8}
|
||||
{5.45f},
|
||||
{3.35f},
|
||||
{2.45f},
|
||||
{0.8f}
|
||||
};
|
||||
int depths[] = { 1, 1, 1, 1 };
|
||||
vector<int> depths = {1, 1, 1, 1};
|
||||
test_dataset(test, "iris", expected, depths);
|
||||
}
|
||||
TEST_F(TestFImdlp, MaxCutPointsFloat)
|
||||
{
|
||||
|
||||
TEST_F(TestFImdlp, MaxCutPointsFloat) {
|
||||
// Set min_length to 75
|
||||
auto test = CPPFImdlp(75, 2, 0.2);
|
||||
auto test = CPPFImdlp(75, 2, 0.2f);
|
||||
vector<cutPoints_t> expected = {
|
||||
{ 5.45, 5.75 },
|
||||
{ 2.85, 3.35 },
|
||||
{ 2.45, 4.75 },
|
||||
{ 0.8, 1.75 }
|
||||
{5.45f, 5.75f},
|
||||
{2.85f, 3.35f},
|
||||
{2.45f, 4.75f},
|
||||
{0.8f, 1.75f}
|
||||
};
|
||||
int depths[] = { 2, 2, 2, 2 };
|
||||
vector<int> depths = {2, 2, 2, 2};
|
||||
test_dataset(test, "iris", expected, depths);
|
||||
}
|
||||
TEST_F(TestFImdlp, ProposedCuts)
|
||||
{
|
||||
vector<pair<float, size_t>> proposed_list = { { 0.1, 2}, { 0.5, 10}, {0.07, 1}, {1, 1}, {2, 2} };
|
||||
size_t expected, computed;
|
||||
for (auto proposed_item : proposed_list) {
|
||||
|
||||
TEST_F(TestFImdlp, ProposedCuts) {
|
||||
vector<pair<float, size_t>> proposed_list = {{0.1f, 2},
|
||||
{0.5f, 10},
|
||||
{0.07f, 1},
|
||||
{1.0f, 1},
|
||||
{2.0f, 2}};
|
||||
size_t expected;
|
||||
size_t computed;
|
||||
for (auto proposed_item: proposed_list) {
|
||||
tie(proposed_cuts, expected) = proposed_item;
|
||||
computed = compute_max_num_cut_points();
|
||||
ASSERT_EQ(expected, computed);
|
||||
|
@@ -5,19 +5,18 @@
|
||||
namespace mdlp {
|
||||
class TestMetrics: public Metrics, public testing::Test {
|
||||
public:
|
||||
labels_t y;
|
||||
samples_t X;
|
||||
indices_t indices;
|
||||
precision_t precision = 0.000001;
|
||||
labels_t y_ = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
indices_t indices_ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
||||
precision_t precision = 0.000001f;
|
||||
|
||||
TestMetrics(): Metrics(y, indices) {}
|
||||
void SetUp()
|
||||
TestMetrics(): Metrics(y_, indices_) {};
|
||||
|
||||
void SetUp() override
|
||||
{
|
||||
y = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
indices = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
||||
setData(y, indices);
|
||||
setData(y_, indices_);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_F(TestMetrics, NumClasses)
|
||||
{
|
||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
@@ -25,20 +24,22 @@ namespace mdlp {
|
||||
EXPECT_EQ(2, computeNumClasses(0, 10));
|
||||
EXPECT_EQ(2, computeNumClasses(8, 10));
|
||||
}
|
||||
|
||||
TEST_F(TestMetrics, Entropy)
|
||||
{
|
||||
EXPECT_EQ(1, entropy(0, 10));
|
||||
EXPECT_EQ(0, entropy(0, 5));
|
||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
setData(y, indices);
|
||||
ASSERT_NEAR(0.468996, entropy(0, 10), precision);
|
||||
ASSERT_NEAR(0.468996f, entropy(0, 10), precision);
|
||||
}
|
||||
|
||||
TEST_F(TestMetrics, InformationGain)
|
||||
{
|
||||
ASSERT_NEAR(1, informationGain(0, 5, 10), precision);
|
||||
ASSERT_NEAR(1, informationGain(0, 5, 10), precision); // For cache
|
||||
y = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 };
|
||||
setData(y, indices);
|
||||
ASSERT_NEAR(0.108032, informationGain(0, 5, 10), precision);
|
||||
ASSERT_NEAR(0.108032f, informationGain(0, 5, 10), precision);
|
||||
}
|
||||
}
|
||||
|
@@ -1,6 +1,9 @@
|
||||
if [ -d build ] ; then
|
||||
rm -fr build
|
||||
fi
|
||||
if [ -d gcovr-report ] ; then
|
||||
rm -fr gcovr-report
|
||||
fi
|
||||
cmake -S . -B build -Wno-dev
|
||||
cmake --build build
|
||||
cd build
|
||||
|
Reference in New Issue
Block a user