480 lines
11 KiB
C
480 lines
11 KiB
C
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include "linear.h"
|
|
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
|
|
#define INF HUGE_VAL
|
|
|
|
void print_null(const char *s) {}
|
|
|
|
void exit_with_help()
|
|
{
|
|
printf(
|
|
"Usage: train [options] training_set_file [model_file]\n"
|
|
"options:\n"
|
|
"-s type : set type of solver (default 1)\n"
|
|
" for multi-class classification\n"
|
|
" 0 -- L2-regularized logistic regression (primal)\n"
|
|
" 1 -- L2-regularized L2-loss support vector classification (dual)\n"
|
|
" 2 -- L2-regularized L2-loss support vector classification (primal)\n"
|
|
" 3 -- L2-regularized L1-loss support vector classification (dual)\n"
|
|
" 4 -- support vector classification by Crammer and Singer\n"
|
|
" 5 -- L1-regularized L2-loss support vector classification\n"
|
|
" 6 -- L1-regularized logistic regression\n"
|
|
" 7 -- L2-regularized logistic regression (dual)\n"
|
|
" for regression\n"
|
|
" 11 -- L2-regularized L2-loss support vector regression (primal)\n"
|
|
" 12 -- L2-regularized L2-loss support vector regression (dual)\n"
|
|
" 13 -- L2-regularized L1-loss support vector regression (dual)\n"
|
|
" for outlier detection\n"
|
|
" 21 -- one-class support vector machine (dual)\n"
|
|
"-c cost : set the parameter C (default 1)\n"
|
|
"-p epsilon : set the epsilon in loss function of SVR (default 0.1)\n"
|
|
"-n nu : set the parameter nu of one-class SVM (default 0.5)\n"
|
|
"-e epsilon : set tolerance of termination criterion\n"
|
|
" -s 0 and 2\n"
|
|
" |f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,\n"
|
|
" where f is the primal function and pos/neg are # of\n"
|
|
" positive/negative data (default 0.01)\n"
|
|
" -s 11\n"
|
|
" |f'(w)|_2 <= eps*|f'(w0)|_2 (default 0.0001)\n"
|
|
" -s 1, 3, 4, 7, and 21\n"
|
|
" Dual maximal violation <= eps; similar to libsvm (default 0.1 except 0.01 for -s 21)\n"
|
|
" -s 5 and 6\n"
|
|
" |f'(w)|_1 <= eps*min(pos,neg)/l*|f'(w0)|_1,\n"
|
|
" where f is the primal function (default 0.01)\n"
|
|
" -s 12 and 13\n"
|
|
" |f'(alpha)|_1 <= eps |f'(alpha0)|,\n"
|
|
" where f is the dual function (default 0.1)\n"
|
|
"-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1)\n"
|
|
"-R : not regularize the bias; must with -B 1 to have the bias; DON'T use this unless you know what it is\n"
|
|
" (for -s 0, 2, 5, 6, 11)\n"
|
|
"-wi weight: weights adjust the parameter C of different classes (see README for details)\n"
|
|
"-v n: n-fold cross validation mode\n"
|
|
"-C : find parameters (C for -s 0, 2 and C, p for -s 11)\n"
|
|
"-q : quiet mode (no outputs)\n"
|
|
);
|
|
exit(1);
|
|
}
|
|
|
|
void exit_input_error(int line_num)
|
|
{
|
|
fprintf(stderr,"Wrong input format at line %d\n", line_num);
|
|
exit(1);
|
|
}
|
|
|
|
static char *line = NULL;
|
|
static int max_line_len;
|
|
|
|
static char* readline(FILE *input)
|
|
{
|
|
int len;
|
|
|
|
if(fgets(line,max_line_len,input) == NULL)
|
|
return NULL;
|
|
|
|
while(strrchr(line,'\n') == NULL)
|
|
{
|
|
max_line_len *= 2;
|
|
line = (char *) realloc(line,max_line_len);
|
|
len = (int) strlen(line);
|
|
if(fgets(line+len,max_line_len-len,input) == NULL)
|
|
break;
|
|
}
|
|
return line;
|
|
}
|
|
|
|
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name);
|
|
void read_problem(const char *filename);
|
|
void do_cross_validation();
|
|
void do_find_parameters();
|
|
|
|
struct feature_node *x_space;
|
|
struct parameter param;
|
|
struct problem prob;
|
|
struct model* model_;
|
|
int flag_cross_validation;
|
|
int flag_find_parameters;
|
|
int flag_C_specified;
|
|
int flag_p_specified;
|
|
int flag_solver_specified;
|
|
int nr_fold;
|
|
double bias;
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
char input_file_name[1024];
|
|
char model_file_name[1024];
|
|
const char *error_msg;
|
|
|
|
parse_command_line(argc, argv, input_file_name, model_file_name);
|
|
read_problem(input_file_name);
|
|
error_msg = check_parameter(&prob,¶m);
|
|
|
|
if(error_msg)
|
|
{
|
|
fprintf(stderr,"ERROR: %s\n",error_msg);
|
|
exit(1);
|
|
}
|
|
|
|
if (flag_find_parameters)
|
|
{
|
|
do_find_parameters();
|
|
}
|
|
else if(flag_cross_validation)
|
|
{
|
|
do_cross_validation();
|
|
}
|
|
else
|
|
{
|
|
model_=train(&prob, ¶m);
|
|
if(save_model(model_file_name, model_))
|
|
{
|
|
fprintf(stderr,"can't save model to file %s\n",model_file_name);
|
|
exit(1);
|
|
}
|
|
free_and_destroy_model(&model_);
|
|
}
|
|
destroy_param(¶m);
|
|
free(prob.y);
|
|
free(prob.x);
|
|
free(x_space);
|
|
free(line);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void do_find_parameters()
|
|
{
|
|
double start_C, start_p, best_C, best_p, best_score;
|
|
if (flag_C_specified)
|
|
start_C = param.C;
|
|
else
|
|
start_C = -1.0;
|
|
if (flag_p_specified)
|
|
start_p = param.p;
|
|
else
|
|
start_p = -1.0;
|
|
|
|
printf("Doing parameter search with %d-fold cross validation.\n", nr_fold);
|
|
find_parameters(&prob, ¶m, nr_fold, start_C, start_p, &best_C, &best_p, &best_score);
|
|
if(param.solver_type == L2R_LR || param.solver_type == L2R_L2LOSS_SVC)
|
|
printf("Best C = %g CV accuracy = %g%%\n", best_C, 100.0*best_score);
|
|
else if(param.solver_type == L2R_L2LOSS_SVR)
|
|
printf("Best C = %g Best p = %g CV MSE = %g\n", best_C, best_p, best_score);
|
|
}
|
|
|
|
void do_cross_validation()
|
|
{
|
|
int i;
|
|
int total_correct = 0;
|
|
double total_error = 0;
|
|
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
|
|
double *target = Malloc(double, prob.l);
|
|
|
|
cross_validation(&prob,¶m,nr_fold,target);
|
|
if(param.solver_type == L2R_L2LOSS_SVR ||
|
|
param.solver_type == L2R_L1LOSS_SVR_DUAL ||
|
|
param.solver_type == L2R_L2LOSS_SVR_DUAL)
|
|
{
|
|
for(i=0;i<prob.l;i++)
|
|
{
|
|
double y = prob.y[i];
|
|
double v = target[i];
|
|
total_error += (v-y)*(v-y);
|
|
sumv += v;
|
|
sumy += y;
|
|
sumvv += v*v;
|
|
sumyy += y*y;
|
|
sumvy += v*y;
|
|
}
|
|
printf("Cross Validation Mean squared error = %g\n",total_error/prob.l);
|
|
printf("Cross Validation Squared correlation coefficient = %g\n",
|
|
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
|
|
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))
|
|
);
|
|
}
|
|
else
|
|
{
|
|
for(i=0;i<prob.l;i++)
|
|
if(target[i] == prob.y[i])
|
|
++total_correct;
|
|
printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);
|
|
}
|
|
|
|
free(target);
|
|
}
|
|
|
|
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name)
|
|
{
|
|
int i;
|
|
void (*print_func)(const char*) = NULL; // default printing to stdout
|
|
|
|
// default values
|
|
param.solver_type = L2R_L2LOSS_SVC_DUAL;
|
|
param.C = 1;
|
|
param.p = 0.1;
|
|
param.nu = 0.5;
|
|
param.eps = INF; // see setting below
|
|
param.nr_weight = 0;
|
|
param.regularize_bias = 1;
|
|
param.weight_label = NULL;
|
|
param.weight = NULL;
|
|
param.init_sol = NULL;
|
|
param.w_recalc = false;
|
|
flag_cross_validation = 0;
|
|
flag_C_specified = 0;
|
|
flag_p_specified = 0;
|
|
flag_solver_specified = 0;
|
|
flag_find_parameters = 0;
|
|
bias = -1;
|
|
|
|
// parse options
|
|
for(i=1;i<argc;i++)
|
|
{
|
|
if(argv[i][0] != '-') break;
|
|
if(++i>=argc)
|
|
exit_with_help();
|
|
switch(argv[i-1][1])
|
|
{
|
|
case 's':
|
|
param.solver_type = atoi(argv[i]);
|
|
flag_solver_specified = 1;
|
|
break;
|
|
|
|
case 'c':
|
|
param.C = atof(argv[i]);
|
|
flag_C_specified = 1;
|
|
break;
|
|
|
|
case 'p':
|
|
flag_p_specified = 1;
|
|
param.p = atof(argv[i]);
|
|
break;
|
|
|
|
case 'n':
|
|
param.nu = atof(argv[i]);
|
|
break;
|
|
|
|
case 'e':
|
|
param.eps = atof(argv[i]);
|
|
break;
|
|
|
|
case 'B':
|
|
bias = atof(argv[i]);
|
|
break;
|
|
|
|
case 'w':
|
|
++param.nr_weight;
|
|
param.weight_label = (int *) realloc(param.weight_label,sizeof(int)*param.nr_weight);
|
|
param.weight = (double *) realloc(param.weight,sizeof(double)*param.nr_weight);
|
|
param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);
|
|
param.weight[param.nr_weight-1] = atof(argv[i]);
|
|
break;
|
|
|
|
case 'v':
|
|
flag_cross_validation = 1;
|
|
nr_fold = atoi(argv[i]);
|
|
if(nr_fold < 2)
|
|
{
|
|
fprintf(stderr,"n-fold cross validation: n must >= 2\n");
|
|
exit_with_help();
|
|
}
|
|
break;
|
|
|
|
case 'q':
|
|
print_func = &print_null;
|
|
i--;
|
|
break;
|
|
|
|
case 'C':
|
|
flag_find_parameters = 1;
|
|
i--;
|
|
break;
|
|
|
|
case 'R':
|
|
param.regularize_bias = 0;
|
|
i--;
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr,"unknown option: -%c\n", argv[i-1][1]);
|
|
exit_with_help();
|
|
break;
|
|
}
|
|
}
|
|
|
|
set_print_string_function(print_func);
|
|
|
|
// determine filenames
|
|
if(i>=argc)
|
|
exit_with_help();
|
|
|
|
strcpy(input_file_name, argv[i]);
|
|
|
|
if(i<argc-1)
|
|
strcpy(model_file_name,argv[i+1]);
|
|
else
|
|
{
|
|
char *p = strrchr(argv[i],'/');
|
|
if(p==NULL)
|
|
p = argv[i];
|
|
else
|
|
++p;
|
|
sprintf(model_file_name,"%s.model",p);
|
|
}
|
|
|
|
// default solver for parameter selection is L2R_L2LOSS_SVC
|
|
if(flag_find_parameters)
|
|
{
|
|
if(!flag_cross_validation)
|
|
nr_fold = 5;
|
|
if(!flag_solver_specified)
|
|
{
|
|
fprintf(stderr, "Solver not specified. Using -s 2\n");
|
|
param.solver_type = L2R_L2LOSS_SVC;
|
|
}
|
|
else if(param.solver_type != L2R_LR && param.solver_type != L2R_L2LOSS_SVC && param.solver_type != L2R_L2LOSS_SVR)
|
|
{
|
|
fprintf(stderr, "Warm-start parameter search only available for -s 0, -s 2 and -s 11\n");
|
|
exit_with_help();
|
|
}
|
|
}
|
|
|
|
if(param.eps == INF)
|
|
{
|
|
switch(param.solver_type)
|
|
{
|
|
case L2R_LR:
|
|
case L2R_L2LOSS_SVC:
|
|
param.eps = 0.01;
|
|
break;
|
|
case L2R_L2LOSS_SVR:
|
|
param.eps = 0.0001;
|
|
break;
|
|
case L2R_L2LOSS_SVC_DUAL:
|
|
case L2R_L1LOSS_SVC_DUAL:
|
|
case MCSVM_CS:
|
|
case L2R_LR_DUAL:
|
|
param.eps = 0.1;
|
|
break;
|
|
case L1R_L2LOSS_SVC:
|
|
case L1R_LR:
|
|
param.eps = 0.01;
|
|
break;
|
|
case L2R_L1LOSS_SVR_DUAL:
|
|
case L2R_L2LOSS_SVR_DUAL:
|
|
param.eps = 0.1;
|
|
break;
|
|
case ONECLASS_SVM:
|
|
param.eps = 0.01;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// read in a problem (in libsvm format)
|
|
void read_problem(const char *filename)
|
|
{
|
|
int max_index, inst_max_index, i;
|
|
size_t elements, j;
|
|
FILE *fp = fopen(filename,"r");
|
|
char *endptr;
|
|
char *idx, *val, *label;
|
|
|
|
if(fp == NULL)
|
|
{
|
|
fprintf(stderr,"can't open input file %s\n",filename);
|
|
exit(1);
|
|
}
|
|
|
|
prob.l = 0;
|
|
elements = 0;
|
|
max_line_len = 1024;
|
|
line = Malloc(char,max_line_len);
|
|
while(readline(fp)!=NULL)
|
|
{
|
|
char *p = strtok(line," \t"); // label
|
|
|
|
// features
|
|
while(1)
|
|
{
|
|
p = strtok(NULL," \t");
|
|
if(p == NULL || *p == '\n') // check '\n' as ' ' may be after the last feature
|
|
break;
|
|
elements++;
|
|
}
|
|
elements++; // for bias term
|
|
prob.l++;
|
|
}
|
|
rewind(fp);
|
|
|
|
prob.bias=bias;
|
|
|
|
prob.y = Malloc(double,prob.l);
|
|
prob.x = Malloc(struct feature_node *,prob.l);
|
|
x_space = Malloc(struct feature_node,elements+prob.l);
|
|
|
|
max_index = 0;
|
|
j=0;
|
|
for(i=0;i<prob.l;i++)
|
|
{
|
|
inst_max_index = 0; // strtol gives 0 if wrong format
|
|
readline(fp);
|
|
prob.x[i] = &x_space[j];
|
|
label = strtok(line," \t\n");
|
|
if(label == NULL) // empty line
|
|
exit_input_error(i+1);
|
|
|
|
prob.y[i] = strtod(label,&endptr);
|
|
if(endptr == label || *endptr != '\0')
|
|
exit_input_error(i+1);
|
|
|
|
while(1)
|
|
{
|
|
idx = strtok(NULL,":");
|
|
val = strtok(NULL," \t");
|
|
|
|
if(val == NULL)
|
|
break;
|
|
|
|
errno = 0;
|
|
x_space[j].index = (int) strtol(idx,&endptr,10);
|
|
if(endptr == idx || errno != 0 || *endptr != '\0' || x_space[j].index <= inst_max_index)
|
|
exit_input_error(i+1);
|
|
else
|
|
inst_max_index = x_space[j].index;
|
|
|
|
errno = 0;
|
|
x_space[j].value = strtod(val,&endptr);
|
|
if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
|
|
exit_input_error(i+1);
|
|
|
|
++j;
|
|
}
|
|
|
|
if(inst_max_index > max_index)
|
|
max_index = inst_max_index;
|
|
|
|
if(prob.bias >= 0)
|
|
x_space[j++].value = prob.bias;
|
|
|
|
x_space[j++].index = -1;
|
|
}
|
|
|
|
if(prob.bias >= 0)
|
|
{
|
|
prob.n=max_index+1;
|
|
for(i=1;i<prob.l;i++)
|
|
(prob.x[i]-2)->index = prob.n;
|
|
x_space[j-2].index = prob.n;
|
|
}
|
|
else
|
|
prob.n=max_index;
|
|
|
|
fclose(fp);
|
|
}
|