First commit
This commit is contained in:
0
liblinear-2.49/python/liblinear/__init__.py
Normal file
0
liblinear-2.49/python/liblinear/__init__.py
Normal file
189
liblinear-2.49/python/liblinear/commonutil.py
Normal file
189
liblinear-2.49/python/liblinear/commonutil.py
Normal file
@@ -0,0 +1,189 @@
|
||||
from __future__ import print_function
|
||||
from array import array
|
||||
import sys
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import sparse
|
||||
except:
|
||||
scipy = None
|
||||
|
||||
|
||||
__all__ = ['svm_read_problem', 'evaluations', 'csr_find_scale_param', 'csr_scale']
|
||||
|
||||
def svm_read_problem(data_source, return_scipy=False):
|
||||
"""
|
||||
svm_read_problem(data_source, return_scipy=False) -> [y, x], y: list, x: list of dictionary
|
||||
svm_read_problem(data_source, return_scipy=True) -> [y, x], y: ndarray, x: csr_matrix
|
||||
|
||||
Read LIBSVM-format data from data_source and return labels y
|
||||
and data instances x.
|
||||
"""
|
||||
if scipy != None and return_scipy:
|
||||
prob_y = array('d')
|
||||
prob_x = array('d')
|
||||
row_ptr = array('l', [0])
|
||||
col_idx = array('l')
|
||||
else:
|
||||
prob_y = []
|
||||
prob_x = []
|
||||
row_ptr = [0]
|
||||
col_idx = []
|
||||
indx_start = 1
|
||||
|
||||
if hasattr(data_source, "read"):
|
||||
file = data_source
|
||||
else:
|
||||
file = open(data_source)
|
||||
try:
|
||||
for line in file:
|
||||
line = line.split(None, 1)
|
||||
# In case an instance with all zero features
|
||||
if len(line) == 1: line += ['']
|
||||
label, features = line
|
||||
prob_y.append(float(label))
|
||||
if scipy != None and return_scipy:
|
||||
nz = 0
|
||||
for e in features.split():
|
||||
ind, val = e.split(":")
|
||||
if ind == '0':
|
||||
indx_start = 0
|
||||
val = float(val)
|
||||
if val != 0:
|
||||
col_idx.append(int(ind)-indx_start)
|
||||
prob_x.append(val)
|
||||
nz += 1
|
||||
row_ptr.append(row_ptr[-1]+nz)
|
||||
else:
|
||||
xi = {}
|
||||
for e in features.split():
|
||||
ind, val = e.split(":")
|
||||
xi[int(ind)] = float(val)
|
||||
prob_x += [xi]
|
||||
except Exception as err_msg:
|
||||
raise err_msg
|
||||
finally:
|
||||
if not hasattr(data_source, "read"):
|
||||
# close file only if it was created by us
|
||||
file.close()
|
||||
|
||||
if scipy != None and return_scipy:
|
||||
prob_y = np.frombuffer(prob_y, dtype='d')
|
||||
prob_x = np.frombuffer(prob_x, dtype='d')
|
||||
col_idx = np.frombuffer(col_idx, dtype='l')
|
||||
row_ptr = np.frombuffer(row_ptr, dtype='l')
|
||||
prob_x = sparse.csr_matrix((prob_x, col_idx, row_ptr))
|
||||
return (prob_y, prob_x)
|
||||
|
||||
def evaluations_scipy(ty, pv):
|
||||
"""
|
||||
evaluations_scipy(ty, pv) -> (ACC, MSE, SCC)
|
||||
ty, pv: ndarray
|
||||
|
||||
Calculate accuracy, mean squared error and squared correlation coefficient
|
||||
using the true values (ty) and predicted values (pv).
|
||||
"""
|
||||
if not (scipy != None and isinstance(ty, np.ndarray) and isinstance(pv, np.ndarray)):
|
||||
raise TypeError("type of ty and pv must be ndarray")
|
||||
if len(ty) != len(pv):
|
||||
raise ValueError("len(ty) must be equal to len(pv)")
|
||||
ACC = 100.0*(ty == pv).mean()
|
||||
MSE = ((ty - pv)**2).mean()
|
||||
l = len(ty)
|
||||
sumv = pv.sum()
|
||||
sumy = ty.sum()
|
||||
sumvy = (pv*ty).sum()
|
||||
sumvv = (pv*pv).sum()
|
||||
sumyy = (ty*ty).sum()
|
||||
with np.errstate(all = 'raise'):
|
||||
try:
|
||||
SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
|
||||
except:
|
||||
SCC = float('nan')
|
||||
return (float(ACC), float(MSE), float(SCC))
|
||||
|
||||
def evaluations(ty, pv, useScipy = True):
|
||||
"""
|
||||
evaluations(ty, pv, useScipy) -> (ACC, MSE, SCC)
|
||||
ty, pv: list, tuple or ndarray
|
||||
useScipy: convert ty, pv to ndarray, and use scipy functions for the evaluation
|
||||
|
||||
Calculate accuracy, mean squared error and squared correlation coefficient
|
||||
using the true values (ty) and predicted values (pv).
|
||||
"""
|
||||
if scipy != None and useScipy:
|
||||
return evaluations_scipy(np.asarray(ty), np.asarray(pv))
|
||||
if len(ty) != len(pv):
|
||||
raise ValueError("len(ty) must be equal to len(pv)")
|
||||
total_correct = total_error = 0
|
||||
sumv = sumy = sumvv = sumyy = sumvy = 0
|
||||
for v, y in zip(pv, ty):
|
||||
if y == v:
|
||||
total_correct += 1
|
||||
total_error += (v-y)*(v-y)
|
||||
sumv += v
|
||||
sumy += y
|
||||
sumvv += v*v
|
||||
sumyy += y*y
|
||||
sumvy += v*y
|
||||
l = len(ty)
|
||||
ACC = 100.0*total_correct/l
|
||||
MSE = total_error/l
|
||||
try:
|
||||
SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
|
||||
except:
|
||||
SCC = float('nan')
|
||||
return (float(ACC), float(MSE), float(SCC))
|
||||
|
||||
def csr_find_scale_param(x, lower=-1, upper=1):
|
||||
assert isinstance(x, sparse.csr_matrix)
|
||||
assert lower < upper
|
||||
l, n = x.shape
|
||||
feat_min = x.min(axis=0).toarray().flatten()
|
||||
feat_max = x.max(axis=0).toarray().flatten()
|
||||
coef = (feat_max - feat_min) / (upper - lower)
|
||||
coef[coef != 0] = 1.0 / coef[coef != 0]
|
||||
|
||||
# (x - ones(l,1) * feat_min') * diag(coef) + lower
|
||||
# = x * diag(coef) - ones(l, 1) * (feat_min' * diag(coef)) + lower
|
||||
# = x * diag(coef) + ones(l, 1) * (-feat_min' * diag(coef) + lower)
|
||||
# = x * diag(coef) + ones(l, 1) * offset'
|
||||
offset = -feat_min * coef + lower
|
||||
offset[coef == 0] = 0
|
||||
|
||||
if sum(offset != 0) * l > 3 * x.getnnz():
|
||||
print(
|
||||
"WARNING: The #nonzeros of the scaled data is at least 2 times larger than the original one.\n"
|
||||
"If feature values are non-negative and sparse, set lower=0 rather than the default lower=-1.",
|
||||
file=sys.stderr)
|
||||
|
||||
return {'coef':coef, 'offset':offset}
|
||||
|
||||
def csr_scale(x, scale_param):
|
||||
assert isinstance(x, sparse.csr_matrix)
|
||||
|
||||
offset = scale_param['offset']
|
||||
coef = scale_param['coef']
|
||||
assert len(coef) == len(offset)
|
||||
|
||||
l, n = x.shape
|
||||
|
||||
if not n == len(coef):
|
||||
print("WARNING: The dimension of scaling parameters and feature number do not match.", file=sys.stderr)
|
||||
coef = coef.resize(n) # zeros padded if n > len(coef)
|
||||
offset = offset.resize(n)
|
||||
|
||||
# scaled_x = x * diag(coef) + ones(l, 1) * offset'
|
||||
offset = sparse.csr_matrix(offset.reshape(1, n))
|
||||
offset = sparse.vstack([offset] * l, format='csr', dtype=x.dtype)
|
||||
scaled_x = x.dot(sparse.diags(coef, 0, shape=(n, n))) + offset
|
||||
|
||||
if scaled_x.getnnz() > x.getnnz():
|
||||
print(
|
||||
"WARNING: original #nonzeros %d\n" % x.getnnz() +
|
||||
" > new #nonzeros %d\n" % scaled_x.getnnz() +
|
||||
"If feature values are non-negative and sparse, get scale_param by setting lower=0 rather than the default lower=-1.",
|
||||
file=sys.stderr)
|
||||
|
||||
return scaled_x
|
479
liblinear-2.49/python/liblinear/liblinear.py
Normal file
479
liblinear-2.49/python/liblinear/liblinear.py
Normal file
@@ -0,0 +1,479 @@
|
||||
from ctypes import *
|
||||
from ctypes.util import find_library
|
||||
from os import path
|
||||
from glob import glob
|
||||
import sys
|
||||
from enum import IntEnum
|
||||
try:
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import sparse
|
||||
except:
|
||||
scipy = None
|
||||
|
||||
if sys.version_info[0] < 3:
|
||||
range = xrange
|
||||
from itertools import izip as zip
|
||||
|
||||
__all__ = ['liblinear', 'feature_node', 'gen_feature_nodearray', 'problem',
|
||||
'parameter', 'model', 'toPyModel', 'solver_names',
|
||||
'print_null']
|
||||
|
||||
try:
|
||||
dirname = path.dirname(path.abspath(__file__))
|
||||
dynamic_lib_name = 'clib.cp*'
|
||||
path_to_so = glob(path.join(dirname, dynamic_lib_name))[0]
|
||||
liblinear = CDLL(path_to_so)
|
||||
except:
|
||||
try :
|
||||
if sys.platform == 'win32':
|
||||
liblinear = CDLL(path.join(dirname, r'..\..\windows\liblinear.dll'))
|
||||
else:
|
||||
liblinear = CDLL(path.join(dirname, '../../liblinear.so.6'))
|
||||
except:
|
||||
# For unix the prefix 'lib' is not considered.
|
||||
if find_library('linear'):
|
||||
liblinear = CDLL(find_library('linear'))
|
||||
elif find_library('liblinear'):
|
||||
liblinear = CDLL(find_library('liblinear'))
|
||||
else:
|
||||
raise Exception('LIBLINEAR library not found.')
|
||||
|
||||
class solver_names(IntEnum):
|
||||
L2R_LR = 0
|
||||
L2R_L2LOSS_SVC_DUAL = 1
|
||||
L2R_L2LOSS_SVC = 2
|
||||
L2R_L1LOSS_SVC_DUAL = 3
|
||||
MCSVM_CS = 4
|
||||
L1R_L2LOSS_SVC = 5
|
||||
L1R_LR = 6
|
||||
L2R_LR_DUAL = 7
|
||||
L2R_L2LOSS_SVR = 11
|
||||
L2R_L2LOSS_SVR_DUAL = 12
|
||||
L2R_L1LOSS_SVR_DUAL = 13
|
||||
ONECLASS_SVM = 21
|
||||
|
||||
PRINT_STRING_FUN = CFUNCTYPE(None, c_char_p)
|
||||
def print_null(s):
|
||||
return
|
||||
|
||||
# In multi-threading, all threads share the same memory space of
|
||||
# the dynamic library (liblinear). Thus, we use a module-level
|
||||
# variable to keep a reference to ctypes print_null, preventing
|
||||
# python from garbage collecting it in thread B while thread A
|
||||
# still needs it. Check the usage of svm_set_print_string_function()
|
||||
# in LIBLINEAR README for details.
|
||||
ctypes_print_null = PRINT_STRING_FUN(print_null)
|
||||
|
||||
def genFields(names, types):
|
||||
return list(zip(names, types))
|
||||
|
||||
def fillprototype(f, restype, argtypes):
|
||||
f.restype = restype
|
||||
f.argtypes = argtypes
|
||||
|
||||
class feature_node(Structure):
|
||||
_names = ["index", "value"]
|
||||
_types = [c_int, c_double]
|
||||
_fields_ = genFields(_names, _types)
|
||||
|
||||
def __str__(self):
|
||||
return '%d:%g' % (self.index, self.value)
|
||||
|
||||
def gen_feature_nodearray(xi, feature_max=None):
|
||||
if feature_max:
|
||||
assert(isinstance(feature_max, int))
|
||||
|
||||
xi_shift = 0 # ensure correct indices of xi
|
||||
if scipy and isinstance(xi, tuple) and len(xi) == 2\
|
||||
and isinstance(xi[0], np.ndarray) and isinstance(xi[1], np.ndarray): # for a sparse vector
|
||||
index_range = xi[0] + 1 # index starts from 1
|
||||
if feature_max:
|
||||
index_range = index_range[np.where(index_range <= feature_max)]
|
||||
elif scipy and isinstance(xi, np.ndarray):
|
||||
xi_shift = 1
|
||||
index_range = xi.nonzero()[0] + 1 # index starts from 1
|
||||
if feature_max:
|
||||
index_range = index_range[np.where(index_range <= feature_max)]
|
||||
elif isinstance(xi, (dict, list, tuple)):
|
||||
if isinstance(xi, dict):
|
||||
index_range = sorted(xi.keys())
|
||||
elif isinstance(xi, (list, tuple)):
|
||||
xi_shift = 1
|
||||
index_range = range(1, len(xi) + 1)
|
||||
index_range = list(filter(lambda j: xi[j-xi_shift] != 0, index_range))
|
||||
|
||||
if feature_max:
|
||||
index_range = list(filter(lambda j: j <= feature_max, index_range))
|
||||
else:
|
||||
raise TypeError('xi should be a dictionary, list, tuple, 1-d numpy array, or tuple of (index, data)')
|
||||
|
||||
ret = (feature_node*(len(index_range)+2))()
|
||||
ret[-1].index = -1 # for bias term
|
||||
ret[-2].index = -1
|
||||
|
||||
if scipy and isinstance(xi, tuple) and len(xi) == 2\
|
||||
and isinstance(xi[0], np.ndarray) and isinstance(xi[1], np.ndarray): # for a sparse vector
|
||||
# since xi=(indices, values), we must sort them simultaneously.
|
||||
for idx, arg in enumerate(np.argsort(index_range)):
|
||||
ret[idx].index = index_range[arg]
|
||||
ret[idx].value = (xi[1])[arg]
|
||||
else:
|
||||
for idx, j in enumerate(index_range):
|
||||
ret[idx].index = j
|
||||
ret[idx].value = xi[j - xi_shift]
|
||||
|
||||
max_idx = 0
|
||||
if len(index_range) > 0:
|
||||
max_idx = index_range[-1]
|
||||
return ret, max_idx
|
||||
|
||||
try:
|
||||
from numba import jit
|
||||
jit_enabled = True
|
||||
except:
|
||||
# We need to support two cases: when jit is called with no arguments, and when jit is called with
|
||||
# a keyword argument.
|
||||
def jit(func=None, *args, **kwargs):
|
||||
if func is None:
|
||||
# This handles the case where jit is used with parentheses: @jit(nopython=True)
|
||||
return lambda x: x
|
||||
else:
|
||||
# This handles the case where jit is used without parentheses: @jit
|
||||
return func
|
||||
jit_enabled = False
|
||||
|
||||
@jit(nopython=True)
|
||||
def csr_to_problem_jit(l, x_val, x_ind, x_rowptr, prob_val, prob_ind, prob_rowptr):
|
||||
for i in range(l):
|
||||
b1,e1 = x_rowptr[i], x_rowptr[i+1]
|
||||
b2,e2 = prob_rowptr[i], prob_rowptr[i+1]-2
|
||||
for j in range(b1,e1):
|
||||
prob_ind[j-b1+b2] = x_ind[j]+1
|
||||
prob_val[j-b1+b2] = x_val[j]
|
||||
def csr_to_problem_nojit(l, x_val, x_ind, x_rowptr, prob_val, prob_ind, prob_rowptr):
|
||||
for i in range(l):
|
||||
x_slice = slice(x_rowptr[i], x_rowptr[i+1])
|
||||
prob_slice = slice(prob_rowptr[i], prob_rowptr[i+1]-2)
|
||||
prob_ind[prob_slice] = x_ind[x_slice]+1
|
||||
prob_val[prob_slice] = x_val[x_slice]
|
||||
|
||||
def csr_to_problem(x, prob):
|
||||
if not x.has_sorted_indices:
|
||||
x.sort_indices()
|
||||
|
||||
# Extra space for termination node and (possibly) bias term
|
||||
x_space = prob.x_space = np.empty((x.nnz+x.shape[0]*2), dtype=feature_node)
|
||||
# rowptr has to be a 64bit integer because it will later be used for pointer arithmetic,
|
||||
# which overflows when the added pointer points to an address that is numerically high.
|
||||
prob.rowptr = x.indptr.astype(np.int64, copy=True)
|
||||
prob.rowptr[1:] += 2*np.arange(1,x.shape[0]+1)
|
||||
prob_ind = x_space["index"]
|
||||
prob_val = x_space["value"]
|
||||
prob_ind[:] = -1
|
||||
if jit_enabled:
|
||||
csr_to_problem_jit(x.shape[0], x.data, x.indices, x.indptr, prob_val, prob_ind, prob.rowptr)
|
||||
else:
|
||||
csr_to_problem_nojit(x.shape[0], x.data, x.indices, x.indptr, prob_val, prob_ind, prob.rowptr)
|
||||
|
||||
class problem(Structure):
|
||||
_names = ["l", "n", "y", "x", "bias"]
|
||||
_types = [c_int, c_int, POINTER(c_double), POINTER(POINTER(feature_node)), c_double]
|
||||
_fields_ = genFields(_names, _types)
|
||||
|
||||
def __init__(self, y, x, bias = -1):
|
||||
if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, np.ndarray))):
|
||||
raise TypeError("type of y: {0} is not supported!".format(type(y)))
|
||||
|
||||
if isinstance(x, (list, tuple)):
|
||||
if len(y) != len(x):
|
||||
raise ValueError("len(y) != len(x)")
|
||||
elif scipy != None and isinstance(x, (np.ndarray, sparse.spmatrix)):
|
||||
if len(y) != x.shape[0]:
|
||||
raise ValueError("len(y) != len(x)")
|
||||
if isinstance(x, np.ndarray):
|
||||
x = np.ascontiguousarray(x) # enforce row-major
|
||||
if isinstance(x, sparse.spmatrix):
|
||||
x = x.tocsr()
|
||||
pass
|
||||
else:
|
||||
raise TypeError("type of x: {0} is not supported!".format(type(x)))
|
||||
self.l = l = len(y)
|
||||
self.bias = -1
|
||||
|
||||
max_idx = 0
|
||||
x_space = self.x_space = []
|
||||
if scipy != None and isinstance(x, sparse.csr_matrix):
|
||||
csr_to_problem(x, self)
|
||||
max_idx = x.shape[1]
|
||||
else:
|
||||
for i, xi in enumerate(x):
|
||||
tmp_xi, tmp_idx = gen_feature_nodearray(xi)
|
||||
x_space += [tmp_xi]
|
||||
max_idx = max(max_idx, tmp_idx)
|
||||
self.n = max_idx
|
||||
|
||||
self.y = (c_double * l)()
|
||||
if scipy != None and isinstance(y, np.ndarray):
|
||||
np.ctypeslib.as_array(self.y, (self.l,))[:] = y
|
||||
else:
|
||||
for i, yi in enumerate(y): self.y[i] = yi
|
||||
|
||||
self.x = (POINTER(feature_node) * l)()
|
||||
if scipy != None and isinstance(x, sparse.csr_matrix):
|
||||
base = addressof(self.x_space.ctypes.data_as(POINTER(feature_node))[0])
|
||||
x_ptr = cast(self.x, POINTER(c_uint64))
|
||||
x_ptr = np.ctypeslib.as_array(x_ptr,(self.l,))
|
||||
x_ptr[:] = self.rowptr[:-1]*sizeof(feature_node)+base
|
||||
else:
|
||||
for i, xi in enumerate(self.x_space): self.x[i] = xi
|
||||
|
||||
self.set_bias(bias)
|
||||
|
||||
def set_bias(self, bias):
|
||||
if self.bias == bias:
|
||||
return
|
||||
if bias >= 0 and self.bias < 0:
|
||||
self.n += 1
|
||||
node = feature_node(self.n, bias)
|
||||
if bias < 0 and self.bias >= 0:
|
||||
self.n -= 1
|
||||
node = feature_node(-1, bias)
|
||||
|
||||
if isinstance(self.x_space, list):
|
||||
for xi in self.x_space:
|
||||
xi[-2] = node
|
||||
else:
|
||||
self.x_space["index"][self.rowptr[1:]-2] = node.index
|
||||
self.x_space["value"][self.rowptr[1:]-2] = node.value
|
||||
|
||||
self.bias = bias
|
||||
|
||||
def copy(self):
|
||||
prob_copy = problem.__new__(problem)
|
||||
for key in problem._names + list(vars(self)):
|
||||
setattr(prob_copy, key, getattr(self, key))
|
||||
return prob_copy
|
||||
|
||||
|
||||
class parameter(Structure):
|
||||
_names = ["solver_type", "eps", "C", "nr_weight", "weight_label",
|
||||
"weight", "p", "nu", "init_sol", "regularize_bias",
|
||||
"w_recalc"]
|
||||
_types = [c_int, c_double, c_double, c_int, POINTER(c_int),
|
||||
POINTER(c_double), c_double, c_double, POINTER(c_double), c_int,c_bool]
|
||||
_fields_ = genFields(_names, _types)
|
||||
|
||||
def __init__(self, options = None):
|
||||
if options == None:
|
||||
options = ''
|
||||
self.parse_options(options)
|
||||
|
||||
def __str__(self):
|
||||
s = ''
|
||||
attrs = parameter._names + list(self.__dict__.keys())
|
||||
values = map(lambda attr: getattr(self, attr), attrs)
|
||||
for attr, val in zip(attrs, values):
|
||||
s += (' %s: %s\n' % (attr, val))
|
||||
s = s.strip()
|
||||
|
||||
return s
|
||||
|
||||
def set_to_default_values(self):
|
||||
self.solver_type = solver_names.L2R_L2LOSS_SVC_DUAL
|
||||
self.eps = float('inf')
|
||||
self.C = 1
|
||||
self.p = 0.1
|
||||
self.nu = 0.5
|
||||
self.nr_weight = 0
|
||||
self.weight_label = None
|
||||
self.weight = None
|
||||
self.init_sol = None
|
||||
self.bias = -1
|
||||
self.regularize_bias = 1
|
||||
self.w_recalc = False
|
||||
self.flag_cross_validation = False
|
||||
self.flag_C_specified = False
|
||||
self.flag_p_specified = False
|
||||
self.flag_solver_specified = False
|
||||
self.flag_find_parameters = False
|
||||
self.nr_fold = 0
|
||||
self.print_func = cast(None, PRINT_STRING_FUN)
|
||||
|
||||
def parse_options(self, options):
|
||||
if isinstance(options, list):
|
||||
argv = options
|
||||
elif isinstance(options, str):
|
||||
argv = options.split()
|
||||
else:
|
||||
raise TypeError("arg 1 should be a list or a str.")
|
||||
self.set_to_default_values()
|
||||
self.print_func = cast(None, PRINT_STRING_FUN)
|
||||
weight_label = []
|
||||
weight = []
|
||||
|
||||
i = 0
|
||||
while i < len(argv) :
|
||||
if argv[i] == "-s":
|
||||
i = i + 1
|
||||
self.solver_type = solver_names(int(argv[i]))
|
||||
self.flag_solver_specified = True
|
||||
elif argv[i] == "-c":
|
||||
i = i + 1
|
||||
self.C = float(argv[i])
|
||||
self.flag_C_specified = True
|
||||
elif argv[i] == "-p":
|
||||
i = i + 1
|
||||
self.p = float(argv[i])
|
||||
self.flag_p_specified = True
|
||||
elif argv[i] == "-n":
|
||||
i = i + 1
|
||||
self.nu = float(argv[i])
|
||||
elif argv[i] == "-e":
|
||||
i = i + 1
|
||||
self.eps = float(argv[i])
|
||||
elif argv[i] == "-B":
|
||||
i = i + 1
|
||||
self.bias = float(argv[i])
|
||||
elif argv[i] == "-v":
|
||||
i = i + 1
|
||||
self.flag_cross_validation = 1
|
||||
self.nr_fold = int(argv[i])
|
||||
if self.nr_fold < 2 :
|
||||
raise ValueError("n-fold cross validation: n must >= 2")
|
||||
elif argv[i].startswith("-w"):
|
||||
i = i + 1
|
||||
self.nr_weight += 1
|
||||
weight_label += [int(argv[i-1][2:])]
|
||||
weight += [float(argv[i])]
|
||||
elif argv[i] == "-q":
|
||||
self.print_func = ctypes_print_null
|
||||
elif argv[i] == "-C":
|
||||
self.flag_find_parameters = True
|
||||
elif argv[i] == "-R":
|
||||
self.regularize_bias = 0
|
||||
else:
|
||||
raise ValueError("Wrong options")
|
||||
i += 1
|
||||
|
||||
liblinear.set_print_string_function(self.print_func)
|
||||
self.weight_label = (c_int*self.nr_weight)()
|
||||
self.weight = (c_double*self.nr_weight)()
|
||||
for i in range(self.nr_weight):
|
||||
self.weight[i] = weight[i]
|
||||
self.weight_label[i] = weight_label[i]
|
||||
|
||||
# default solver for parameter selection is L2R_L2LOSS_SVC
|
||||
if self.flag_find_parameters:
|
||||
if not self.flag_cross_validation:
|
||||
self.nr_fold = 5
|
||||
if not self.flag_solver_specified:
|
||||
self.solver_type = solver_names.L2R_L2LOSS_SVC
|
||||
self.flag_solver_specified = True
|
||||
elif self.solver_type not in [solver_names.L2R_LR, solver_names.L2R_L2LOSS_SVC, solver_names.L2R_L2LOSS_SVR]:
|
||||
raise ValueError("Warm-start parameter search only available for -s 0, -s 2 and -s 11")
|
||||
|
||||
if self.eps == float('inf'):
|
||||
if self.solver_type in [solver_names.L2R_LR, solver_names.L2R_L2LOSS_SVC]:
|
||||
self.eps = 0.01
|
||||
elif self.solver_type in [solver_names.L2R_L2LOSS_SVR]:
|
||||
self.eps = 0.0001
|
||||
elif self.solver_type in [solver_names.L2R_L2LOSS_SVC_DUAL, solver_names.L2R_L1LOSS_SVC_DUAL, solver_names.MCSVM_CS, solver_names.L2R_LR_DUAL]:
|
||||
self.eps = 0.1
|
||||
elif self.solver_type in [solver_names.L1R_L2LOSS_SVC, solver_names.L1R_LR]:
|
||||
self.eps = 0.01
|
||||
elif self.solver_type in [solver_names.L2R_L2LOSS_SVR_DUAL, solver_names.L2R_L1LOSS_SVR_DUAL]:
|
||||
self.eps = 0.1
|
||||
elif self.solver_type in [solver_names.ONECLASS_SVM]:
|
||||
self.eps = 0.01
|
||||
|
||||
class model(Structure):
|
||||
_names = ["param", "nr_class", "nr_feature", "w", "label", "bias", "rho"]
|
||||
_types = [parameter, c_int, c_int, POINTER(c_double), POINTER(c_int), c_double, c_double]
|
||||
_fields_ = genFields(_names, _types)
|
||||
|
||||
def __init__(self):
|
||||
self.__createfrom__ = 'python'
|
||||
|
||||
def __del__(self):
|
||||
# free memory created by C to avoid memory leak
|
||||
if hasattr(self, '__createfrom__') and self.__createfrom__ == 'C':
|
||||
liblinear.free_and_destroy_model(pointer(self))
|
||||
|
||||
def get_nr_feature(self):
|
||||
return liblinear.get_nr_feature(self)
|
||||
|
||||
def get_nr_class(self):
|
||||
return liblinear.get_nr_class(self)
|
||||
|
||||
def get_labels(self):
|
||||
nr_class = self.get_nr_class()
|
||||
labels = (c_int * nr_class)()
|
||||
liblinear.get_labels(self, labels)
|
||||
return labels[:nr_class]
|
||||
|
||||
def get_decfun_coef(self, feat_idx, label_idx=0):
|
||||
return liblinear.get_decfun_coef(self, feat_idx, label_idx)
|
||||
|
||||
def get_decfun_bias(self, label_idx=0):
|
||||
return liblinear.get_decfun_bias(self, label_idx)
|
||||
|
||||
def get_decfun_rho(self):
|
||||
return liblinear.get_decfun_rho(self)
|
||||
|
||||
def get_decfun(self, label_idx=0):
|
||||
w = [liblinear.get_decfun_coef(self, feat_idx, label_idx) for feat_idx in range(1, self.nr_feature+1)]
|
||||
if self.is_oneclass_model():
|
||||
rho = self.get_decfun_rho()
|
||||
return (w, -rho)
|
||||
else:
|
||||
b = liblinear.get_decfun_bias(self, label_idx)
|
||||
return (w, b)
|
||||
|
||||
def is_probability_model(self):
|
||||
return (liblinear.check_probability_model(self) == 1)
|
||||
|
||||
def is_regression_model(self):
|
||||
return (liblinear.check_regression_model(self) == 1)
|
||||
|
||||
def is_oneclass_model(self):
|
||||
return (liblinear.check_oneclass_model(self) == 1)
|
||||
|
||||
def toPyModel(model_ptr):
|
||||
"""
|
||||
toPyModel(model_ptr) -> model
|
||||
|
||||
Convert a ctypes POINTER(model) to a Python model
|
||||
"""
|
||||
if bool(model_ptr) == False:
|
||||
raise ValueError("Null pointer")
|
||||
m = model_ptr.contents
|
||||
m.__createfrom__ = 'C'
|
||||
return m
|
||||
|
||||
fillprototype(liblinear.train, POINTER(model), [POINTER(problem), POINTER(parameter)])
|
||||
fillprototype(liblinear.find_parameters, None, [POINTER(problem), POINTER(parameter), c_int, c_double, c_double, POINTER(c_double), POINTER(c_double), POINTER(c_double)])
|
||||
fillprototype(liblinear.cross_validation, None, [POINTER(problem), POINTER(parameter), c_int, POINTER(c_double)])
|
||||
|
||||
fillprototype(liblinear.predict_values, c_double, [POINTER(model), POINTER(feature_node), POINTER(c_double)])
|
||||
fillprototype(liblinear.predict, c_double, [POINTER(model), POINTER(feature_node)])
|
||||
fillprototype(liblinear.predict_probability, c_double, [POINTER(model), POINTER(feature_node), POINTER(c_double)])
|
||||
|
||||
fillprototype(liblinear.save_model, c_int, [c_char_p, POINTER(model)])
|
||||
fillprototype(liblinear.load_model, POINTER(model), [c_char_p])
|
||||
|
||||
fillprototype(liblinear.get_nr_feature, c_int, [POINTER(model)])
|
||||
fillprototype(liblinear.get_nr_class, c_int, [POINTER(model)])
|
||||
fillprototype(liblinear.get_labels, None, [POINTER(model), POINTER(c_int)])
|
||||
fillprototype(liblinear.get_decfun_coef, c_double, [POINTER(model), c_int, c_int])
|
||||
fillprototype(liblinear.get_decfun_bias, c_double, [POINTER(model), c_int])
|
||||
fillprototype(liblinear.get_decfun_rho, c_double, [POINTER(model)])
|
||||
|
||||
fillprototype(liblinear.free_model_content, None, [POINTER(model)])
|
||||
fillprototype(liblinear.free_and_destroy_model, None, [POINTER(POINTER(model))])
|
||||
fillprototype(liblinear.destroy_param, None, [POINTER(parameter)])
|
||||
fillprototype(liblinear.check_parameter, c_char_p, [POINTER(problem), POINTER(parameter)])
|
||||
fillprototype(liblinear.check_probability_model, c_int, [POINTER(model)])
|
||||
fillprototype(liblinear.check_regression_model, c_int, [POINTER(model)])
|
||||
fillprototype(liblinear.check_oneclass_model, c_int, [POINTER(model)])
|
||||
fillprototype(liblinear.set_print_string_function, None, [CFUNCTYPE(None, c_char_p)])
|
285
liblinear-2.49/python/liblinear/liblinearutil.py
Normal file
285
liblinear-2.49/python/liblinear/liblinearutil.py
Normal file
@@ -0,0 +1,285 @@
|
||||
import os, sys
|
||||
from .liblinear import *
|
||||
from .liblinear import __all__ as liblinear_all
|
||||
from .commonutil import *
|
||||
from .commonutil import __all__ as common_all
|
||||
from ctypes import c_double
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import sparse
|
||||
except:
|
||||
scipy = None
|
||||
|
||||
if sys.version_info[0] < 3:
|
||||
range = xrange
|
||||
from itertools import izip as zip
|
||||
_cstr = lambda s: s.encode("utf-8") if isinstance(s,unicode) else str(s)
|
||||
else:
|
||||
_cstr = lambda s: bytes(s, "utf-8")
|
||||
|
||||
__all__ = ['load_model', 'save_model', 'train', 'predict'] + liblinear_all + common_all
|
||||
|
||||
|
||||
def load_model(model_file_name):
|
||||
"""
|
||||
load_model(model_file_name) -> model
|
||||
|
||||
Load a LIBLINEAR model from model_file_name and return.
|
||||
"""
|
||||
model = liblinear.load_model(_cstr(model_file_name))
|
||||
if not model:
|
||||
print("can't open model file %s" % model_file_name)
|
||||
return None
|
||||
model = toPyModel(model)
|
||||
return model
|
||||
|
||||
def save_model(model_file_name, model):
|
||||
"""
|
||||
save_model(model_file_name, model) -> None
|
||||
|
||||
Save a LIBLINEAR model to the file model_file_name.
|
||||
"""
|
||||
liblinear.save_model(_cstr(model_file_name), model)
|
||||
|
||||
def train(arg1, arg2=None, arg3=None):
|
||||
"""
|
||||
train(y, x [, options]) -> model | ACC
|
||||
|
||||
y: a list/tuple/ndarray of l true labels (type must be int/double).
|
||||
|
||||
x: 1. a list/tuple of l training instances. Feature vector of
|
||||
each training instance is a list/tuple or dictionary.
|
||||
|
||||
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
|
||||
|
||||
train(prob [, options]) -> model | ACC
|
||||
train(prob, param) -> model | ACC
|
||||
|
||||
Train a model from data (y, x) or a problem prob using
|
||||
'options' or a parameter param.
|
||||
|
||||
If '-v' is specified in 'options' (i.e., cross validation)
|
||||
either accuracy (ACC) or mean-squared error (MSE) is returned.
|
||||
|
||||
options:
|
||||
-s type : set type of solver (default 1)
|
||||
for multi-class classification
|
||||
0 -- L2-regularized logistic regression (primal)
|
||||
1 -- L2-regularized L2-loss support vector classification (dual)
|
||||
2 -- L2-regularized L2-loss support vector classification (primal)
|
||||
3 -- L2-regularized L1-loss support vector classification (dual)
|
||||
4 -- support vector classification by Crammer and Singer
|
||||
5 -- L1-regularized L2-loss support vector classification
|
||||
6 -- L1-regularized logistic regression
|
||||
7 -- L2-regularized logistic regression (dual)
|
||||
for regression
|
||||
11 -- L2-regularized L2-loss support vector regression (primal)
|
||||
12 -- L2-regularized L2-loss support vector regression (dual)
|
||||
13 -- L2-regularized L1-loss support vector regression (dual)
|
||||
for outlier detection
|
||||
21 -- one-class support vector machine (dual)
|
||||
-c cost : set the parameter C (default 1)
|
||||
-p epsilon : set the epsilon in loss function of SVR (default 0.1)
|
||||
-e epsilon : set tolerance of termination criterion
|
||||
-s 0 and 2
|
||||
|f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,
|
||||
where f is the primal function, (default 0.01)
|
||||
-s 11
|
||||
|f'(w)|_2 <= eps*|f'(w0)|_2 (default 0.0001)
|
||||
-s 1, 3, 4, 7, and 21
|
||||
Dual maximal violation <= eps; similar to libsvm (default 0.1 except 0.01 for -s 21)
|
||||
-s 5 and 6
|
||||
|f'(w)|_inf <= eps*min(pos,neg)/l*|f'(w0)|_inf,
|
||||
where f is the primal function (default 0.01)
|
||||
-s 12 and 13
|
||||
|f'(alpha)|_1 <= eps |f'(alpha0)|,
|
||||
where f is the dual function (default 0.1)
|
||||
-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1)
|
||||
-R : not regularize the bias; must with -B 1 to have the bias; DON'T use this unless you know what it is
|
||||
(for -s 0, 2, 5, 6, 11)"
|
||||
-wi weight: weights adjust the parameter C of different classes (see README for details)
|
||||
-v n: n-fold cross validation mode
|
||||
-C : find parameters (C for -s 0, 2 and C, p for -s 11)
|
||||
-q : quiet mode (no outputs)
|
||||
"""
|
||||
prob, param = None, None
|
||||
if isinstance(arg1, (list, tuple)) or (scipy and isinstance(arg1, np.ndarray)):
|
||||
assert isinstance(arg2, (list, tuple)) or (scipy and isinstance(arg2, (np.ndarray, sparse.spmatrix)))
|
||||
y, x, options = arg1, arg2, arg3
|
||||
prob = problem(y, x)
|
||||
param = parameter(options)
|
||||
elif isinstance(arg1, problem):
|
||||
prob = arg1
|
||||
if isinstance(arg2, parameter):
|
||||
param = arg2
|
||||
else:
|
||||
param = parameter(arg2)
|
||||
if prob == None or param == None :
|
||||
raise TypeError("Wrong types for the arguments")
|
||||
|
||||
prob.set_bias(param.bias)
|
||||
liblinear.set_print_string_function(param.print_func)
|
||||
err_msg = liblinear.check_parameter(prob, param)
|
||||
if err_msg :
|
||||
raise ValueError('Error: %s' % err_msg)
|
||||
|
||||
if param.flag_find_parameters:
|
||||
nr_fold = param.nr_fold
|
||||
best_C = c_double()
|
||||
best_p = c_double()
|
||||
best_score = c_double()
|
||||
if param.flag_C_specified:
|
||||
start_C = param.C
|
||||
else:
|
||||
start_C = -1.0
|
||||
if param.flag_p_specified:
|
||||
start_p = param.p
|
||||
else:
|
||||
start_p = -1.0
|
||||
liblinear.find_parameters(prob, param, nr_fold, start_C, start_p, best_C, best_p, best_score)
|
||||
if param.solver_type in [solver_names.L2R_LR, solver_names.L2R_L2LOSS_SVC]:
|
||||
print("Best C = %g CV accuracy = %g%%\n"% (best_C.value, 100.0*best_score.value))
|
||||
elif param.solver_type in [solver_names.L2R_L2LOSS_SVR]:
|
||||
print("Best C = %g Best p = %g CV MSE = %g\n"% (best_C.value, best_p.value, best_score.value))
|
||||
return best_C.value,best_p.value,best_score.value
|
||||
|
||||
|
||||
elif param.flag_cross_validation:
|
||||
l, nr_fold = prob.l, param.nr_fold
|
||||
target = (c_double * l)()
|
||||
liblinear.cross_validation(prob, param, nr_fold, target)
|
||||
ACC, MSE, SCC = evaluations(prob.y[:l], target[:l])
|
||||
if param.solver_type in [solver_names.L2R_L2LOSS_SVR, solver_names.L2R_L2LOSS_SVR_DUAL, solver_names.L2R_L1LOSS_SVR_DUAL]:
|
||||
print("Cross Validation Mean squared error = %g" % MSE)
|
||||
print("Cross Validation Squared correlation coefficient = %g" % SCC)
|
||||
return MSE
|
||||
else:
|
||||
print("Cross Validation Accuracy = %g%%" % ACC)
|
||||
return ACC
|
||||
else:
|
||||
m = liblinear.train(prob, param)
|
||||
m = toPyModel(m)
|
||||
|
||||
return m
|
||||
|
||||
def predict(y, x, m, options=""):
|
||||
"""
|
||||
predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals)
|
||||
|
||||
y: a list/tuple/ndarray of l true labels (type must be int/double).
|
||||
It is used for calculating the accuracy. Use [] if true labels are
|
||||
unavailable.
|
||||
|
||||
x: 1. a list/tuple of l training instances. Feature vector of
|
||||
each training instance is a list/tuple or dictionary.
|
||||
|
||||
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
|
||||
|
||||
Predict data (y, x) with the SVM model m.
|
||||
options:
|
||||
-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0); currently for logistic regression only
|
||||
-q quiet mode (no outputs)
|
||||
|
||||
The return tuple contains
|
||||
p_labels: a list of predicted labels
|
||||
p_acc: a tuple including accuracy (for classification), mean-squared
|
||||
error, and squared correlation coefficient (for regression).
|
||||
p_vals: a list of decision values or probability estimates (if '-b 1'
|
||||
is specified). If k is the number of classes, for decision values,
|
||||
each element includes results of predicting k binary-class
|
||||
SVMs. if k = 2 and solver is not MCSVM_CS, only one decision value
|
||||
is returned. For probabilities, each element contains k values
|
||||
indicating the probability that the testing instance is in each class.
|
||||
Note that the order of classes here is the same as 'model.label'
|
||||
field in the model structure.
|
||||
"""
|
||||
|
||||
def info(s):
|
||||
print(s)
|
||||
|
||||
if scipy and isinstance(x, np.ndarray):
|
||||
x = np.ascontiguousarray(x) # enforce row-major
|
||||
elif scipy and isinstance(x, sparse.spmatrix):
|
||||
x = x.tocsr()
|
||||
elif not isinstance(x, (list, tuple)):
|
||||
raise TypeError("type of x: {0} is not supported!".format(type(x)))
|
||||
|
||||
if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, np.ndarray))):
|
||||
raise TypeError("type of y: {0} is not supported!".format(type(y)))
|
||||
|
||||
predict_probability = 0
|
||||
argv = options.split()
|
||||
i = 0
|
||||
while i < len(argv):
|
||||
if argv[i] == '-b':
|
||||
i += 1
|
||||
predict_probability = int(argv[i])
|
||||
elif argv[i] == '-q':
|
||||
info = print_null
|
||||
else:
|
||||
raise ValueError("Wrong options")
|
||||
i+=1
|
||||
|
||||
solver_type = m.param.solver_type
|
||||
nr_class = m.get_nr_class()
|
||||
nr_feature = m.get_nr_feature()
|
||||
is_prob_model = m.is_probability_model()
|
||||
bias = m.bias
|
||||
if bias >= 0:
|
||||
biasterm = feature_node(nr_feature+1, bias)
|
||||
else:
|
||||
biasterm = feature_node(-1, bias)
|
||||
pred_labels = []
|
||||
pred_values = []
|
||||
|
||||
if scipy and isinstance(x, sparse.spmatrix):
|
||||
nr_instance = x.shape[0]
|
||||
else:
|
||||
nr_instance = len(x)
|
||||
|
||||
if predict_probability:
|
||||
if not is_prob_model:
|
||||
raise TypeError('probability output is only supported for logistic regression')
|
||||
prob_estimates = (c_double * nr_class)()
|
||||
for i in range(nr_instance):
|
||||
if scipy and isinstance(x, sparse.spmatrix):
|
||||
indslice = slice(x.indptr[i], x.indptr[i+1])
|
||||
xi, idx = gen_feature_nodearray((x.indices[indslice], x.data[indslice]), feature_max=nr_feature)
|
||||
else:
|
||||
xi, idx = gen_feature_nodearray(x[i], feature_max=nr_feature)
|
||||
xi[-2] = biasterm
|
||||
label = liblinear.predict_probability(m, xi, prob_estimates)
|
||||
values = prob_estimates[:nr_class]
|
||||
pred_labels += [label]
|
||||
pred_values += [values]
|
||||
else:
|
||||
if nr_class <= 2:
|
||||
nr_classifier = 1
|
||||
else:
|
||||
nr_classifier = nr_class
|
||||
dec_values = (c_double * nr_classifier)()
|
||||
for i in range(nr_instance):
|
||||
if scipy and isinstance(x, sparse.spmatrix):
|
||||
indslice = slice(x.indptr[i], x.indptr[i+1])
|
||||
xi, idx = gen_feature_nodearray((x.indices[indslice], x.data[indslice]), feature_max=nr_feature)
|
||||
else:
|
||||
xi, idx = gen_feature_nodearray(x[i], feature_max=nr_feature)
|
||||
xi[-2] = biasterm
|
||||
label = liblinear.predict_values(m, xi, dec_values)
|
||||
values = dec_values[:nr_classifier]
|
||||
pred_labels += [label]
|
||||
pred_values += [values]
|
||||
|
||||
if len(y) == 0:
|
||||
y = [0] * nr_instance
|
||||
ACC, MSE, SCC = evaluations(y, pred_labels)
|
||||
|
||||
if m.is_regression_model():
|
||||
info("Mean squared error = %g (regression)" % MSE)
|
||||
info("Squared correlation coefficient = %g (regression)" % SCC)
|
||||
else:
|
||||
info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(round(nr_instance*ACC/100)), nr_instance))
|
||||
|
||||
return pred_labels, (ACC, MSE, SCC), pred_values
|
Reference in New Issue
Block a user