Files
SVMClassifier/include/svm_classifier/kernel_parameters.hpp
Ricardo Montañana Gómez d6dc083a5a
Some checks failed
CI/CD Pipeline / Code Linting (push) Failing after 22s
CI/CD Pipeline / Build and Test (Debug, clang, ubuntu-latest) (push) Failing after 5m44s
CI/CD Pipeline / Build and Test (Debug, gcc, ubuntu-latest) (push) Failing after 5m33s
CI/CD Pipeline / Build and Test (Release, clang, ubuntu-20.04) (push) Failing after 6m12s
CI/CD Pipeline / Build and Test (Release, clang, ubuntu-latest) (push) Failing after 5m13s
CI/CD Pipeline / Build and Test (Release, gcc, ubuntu-20.04) (push) Failing after 5m30s
CI/CD Pipeline / Build and Test (Release, gcc, ubuntu-latest) (push) Failing after 5m33s
CI/CD Pipeline / Docker Build Test (push) Failing after 13s
CI/CD Pipeline / Performance Benchmarks (push) Has been skipped
CI/CD Pipeline / Build Documentation (push) Successful in 31s
CI/CD Pipeline / Create Release Package (push) Has been skipped
Initial commit as Claude developed it
2025-06-22 12:50:10 +02:00

195 lines
6.9 KiB
C++

#pragma once
#include "types.hpp"
#include <torch/torch.h>
#include <vector>
#include <memory>
// Forward declarations for libsvm and liblinear structures
struct svm_node;
struct svm_problem;
struct feature_node;
struct problem;
namespace svm_classifier {
/**
* @brief Data converter between libtorch tensors and SVM library formats
*
* This class handles the conversion between PyTorch tensors and the data structures
* required by libsvm and liblinear libraries. It manages memory allocation and
* provides efficient conversion methods.
*/
class DataConverter {
public:
/**
* @brief Default constructor
*/
DataConverter();
/**
* @brief Destructor - cleans up allocated memory
*/
~DataConverter();
/**
* @brief Convert PyTorch tensors to libsvm format
* @param X Feature tensor of shape (n_samples, n_features)
* @param y Target tensor of shape (n_samples,) - optional for prediction
* @return Pointer to svm_problem structure
*/
std::unique_ptr<svm_problem> to_svm_problem(const torch::Tensor& X,
const torch::Tensor& y = torch::Tensor());
/**
* @brief Convert PyTorch tensors to liblinear format
* @param X Feature tensor of shape (n_samples, n_features)
* @param y Target tensor of shape (n_samples,) - optional for prediction
* @return Pointer to problem structure
*/
std::unique_ptr<problem> to_linear_problem(const torch::Tensor& X,
const torch::Tensor& y = torch::Tensor());
/**
* @brief Convert single sample to libsvm format
* @param sample Feature tensor of shape (n_features,)
* @return Pointer to svm_node array
*/
svm_node* to_svm_node(const torch::Tensor& sample);
/**
* @brief Convert single sample to liblinear format
* @param sample Feature tensor of shape (n_features,)
* @return Pointer to feature_node array
*/
feature_node* to_feature_node(const torch::Tensor& sample);
/**
* @brief Convert predictions back to PyTorch tensor
* @param predictions Vector of predictions
* @return PyTorch tensor with predictions
*/
torch::Tensor from_predictions(const std::vector<double>& predictions);
/**
* @brief Convert probabilities back to PyTorch tensor
* @param probabilities 2D vector of class probabilities
* @return PyTorch tensor with probabilities of shape (n_samples, n_classes)
*/
torch::Tensor from_probabilities(const std::vector<std::vector<double>>& probabilities);
/**
* @brief Convert decision values back to PyTorch tensor
* @param decision_values 2D vector of decision function values
* @return PyTorch tensor with decision values
*/
torch::Tensor from_decision_values(const std::vector<std::vector<double>>& decision_values);
/**
* @brief Validate input tensors
* @param X Feature tensor
* @param y Target tensor (optional)
* @throws std::invalid_argument if tensors are invalid
*/
void validate_tensors(const torch::Tensor& X, const torch::Tensor& y = torch::Tensor());
/**
* @brief Get number of features from last conversion
* @return Number of features
*/
int get_n_features() const { return n_features_; }
/**
* @brief Get number of samples from last conversion
* @return Number of samples
*/
int get_n_samples() const { return n_samples_; }
/**
* @brief Clean up all allocated memory
*/
void cleanup();
/**
* @brief Set sparse threshold (features with absolute value below this are ignored)
* @param threshold Sparse threshold (default: 1e-8)
*/
void set_sparse_threshold(double threshold) { sparse_threshold_ = threshold; }
/**
* @brief Get sparse threshold
* @return Current sparse threshold
*/
double get_sparse_threshold() const { return sparse_threshold_; }
private:
int n_features_; ///< Number of features
int n_samples_; ///< Number of samples
double sparse_threshold_; ///< Threshold for sparse features
// Memory management for libsvm structures
std::vector<std::vector<svm_node>> svm_nodes_storage_;
std::vector<svm_node*> svm_x_space_;
std::vector<double> svm_y_space_;
// Memory management for liblinear structures
std::vector<std::vector<feature_node>> linear_nodes_storage_;
std::vector<feature_node*> linear_x_space_;
std::vector<double> linear_y_space_;
// Single sample storage (for prediction)
std::vector<svm_node> single_svm_nodes_;
std::vector<feature_node> single_linear_nodes_;
/**
* @brief Convert tensor data to libsvm nodes for multiple samples
* @param X Feature tensor
* @return Vector of svm_node vectors
*/
std::vector<std::vector<svm_node>> tensor_to_svm_nodes(const torch::Tensor& X);
/**
* @brief Convert tensor data to liblinear nodes for multiple samples
* @param X Feature tensor
* @return Vector of feature_node vectors
*/
std::vector<std::vector<feature_node>> tensor_to_linear_nodes(const torch::Tensor& X);
/**
* @brief Convert single tensor sample to svm_node vector
* @param sample Feature tensor of shape (n_features,)
* @return Vector of svm_node structures
*/
std::vector<svm_node> sample_to_svm_nodes(const torch::Tensor& sample);
/**
* @brief Convert single tensor sample to feature_node vector
* @param sample Feature tensor of shape (n_features,)
* @return Vector of feature_node structures
*/
std::vector<feature_node> sample_to_linear_nodes(const torch::Tensor& sample);
/**
* @brief Extract labels from target tensor
* @param y Target tensor
* @return Vector of double labels
*/
std::vector<double> extract_labels(const torch::Tensor& y);
/**
* @brief Check if tensor is on CPU and convert if necessary
* @param tensor Input tensor
* @return Tensor guaranteed to be on CPU
*/
torch::Tensor ensure_cpu_tensor(const torch::Tensor& tensor);
/**
* @brief Validate tensor dimensions and data type
* @param tensor Tensor to validate
* @param expected_dims Expected number of dimensions
* @param name Tensor name for error messages
*/
void validate_tensor_properties(const torch::Tensor& tensor, int expected_dims, const std::string& name);
};
} // namespace svm_classifier