# Changelog All notable changes to the SVM Classifier C++ project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). ## [Unreleased] ### Planned - Feature importance extraction for linear kernels - Model serialization and persistence - CUDA GPU acceleration support - Python bindings via pybind11 - Sparse matrix support optimization - Online learning capabilities ## [1.0.0] - 2024-12-XX ### Added - Initial release of SVM Classifier C++ - **Core Features** - Support Vector Machine classifier with scikit-learn compatible API - Multiple kernel support: Linear, RBF, Polynomial, Sigmoid - Automatic library selection: liblinear for linear, libsvm for non-linear - Multiclass classification: One-vs-Rest (OvR) and One-vs-One (OvO) strategies - Native PyTorch tensor integration - JSON-based parameter configuration using nlohmann::json - **API Methods** - `fit()`: Train the classifier on labeled data - `predict()`: Predict class labels for new samples - `predict_proba()`: Predict class probabilities (when supported) - `score()`: Calculate accuracy on test data - `decision_function()`: Get decision function values - `cross_validate()`: K-fold cross-validation - `grid_search()`: Hyperparameter optimization - `evaluate()`: Comprehensive evaluation metrics - **Data Handling** - Efficient tensor to SVM format conversion - Automatic CPU/GPU tensor handling - Sparse feature support with configurable threshold - Memory-efficient data structures - Support for various tensor data types - **Kernel Support** - **Linear**: Fast, optimized for high-dimensional data - **RBF**: Radial Basis Function with auto/manual gamma - **Polynomial**: Configurable degree and coefficients - **Sigmoid**: Neural network-like kernel - **Multiclass Strategies** - **One-vs-Rest**: Faster training, good for many classes - **One-vs-One**: Better accuracy, voting-based prediction - **Testing & Quality** - Comprehensive test suite with Catch2 - Unit tests for all components - Integration tests for end-to-end workflows - Performance benchmarks and profiling - Memory leak detection with Valgrind - Code coverage analysis with lcov - Cross-platform compatibility (Linux, macOS, Windows) - **Build System** - Modern CMake build system (3.15+) - Automatic dependency management - Multiple build configurations (Debug, Release, RelWithDebInfo) - Package generation with CPack - Docker support for containerized builds - Automated installation script - **Documentation** - Comprehensive README with usage examples - Quick start guide for immediate productivity - Development guide for contributors - API documentation with Doxygen - Performance benchmarking results - Troubleshooting and FAQ sections - **Examples & Demos** - Basic usage example with simple dataset - Advanced usage with hyperparameter tuning - Performance comparison between kernels - Cross-validation and model evaluation - Feature preprocessing demonstrations - Imbalanced dataset handling - **CI/CD Pipeline** - GitHub Actions workflow - Multi-platform testing (Ubuntu, macOS) - Multiple compiler support (GCC, Clang) - Automated testing and validation - Code quality checks (formatting, static analysis) - Documentation generation and deployment - Release automation - **Development Tools** - clang-format configuration for consistent code style - clang-tidy setup for static analysis - Doxygen configuration for documentation - Docker development environment - Comprehensive validation script - Performance profiling tools ### Technical Details - **Language**: C++17 with modern C++ practices - **Dependencies**: - libtorch (PyTorch C++) for tensor operations - libsvm for non-linear SVM algorithms - liblinear for efficient linear classification - nlohmann::json for configuration management - Catch2 for testing framework - **Architecture**: Modular design with clear separation of concerns - **Memory Management**: RAII principles, automatic resource cleanup - **Error Handling**: Exception-based with meaningful error messages - **Performance**: Optimized data conversion, efficient memory usage ### Supported Platforms - **Linux**: Ubuntu 18.04+, CentOS 7+, Debian 9+ - **macOS**: 10.14+ (Mojave and later) - **Windows**: Windows 10 with Visual Studio 2019+ ### Performance Characteristics - **Linear Kernel**: Handles datasets up to 100K+ samples efficiently - **RBF Kernel**: Optimized for datasets up to 10K samples - **Memory Usage**: Scales linearly with dataset size - **Training Speed**: Competitive with scikit-learn for equivalent operations - **Prediction Speed**: Sub-millisecond prediction for individual samples ### Compatibility - **Compiler Support**: GCC 7+, Clang 5+, MSVC 2019+ - **CMake**: Version 3.15 or higher required - **PyTorch**: Compatible with libtorch 1.9+ and 2.x series - **Standards**: Follows C++17 standard, forward compatible with C++20 ## [0.9.0] - 2024-11-XX (Beta Release) ### Added - Core SVM classifier implementation - Basic kernel support (Linear, RBF) - Initial multiclass support - Proof-of-concept examples - Basic test suite ### Known Issues - Limited documentation - Performance not optimized - Missing advanced features ## [0.5.0] - 2024-10-XX (Alpha Release) ### Added - Project structure and build system - Initial CMake configuration - Basic tensor conversion utilities - Preliminary API design ### Development Notes - Focus on architecture and design - Establishing coding standards - Setting up CI/CD pipeline --- ## Contributing See [DEVELOPMENT.md](DEVELOPMENT.md) for information about contributing to this project. ## Migration Guide ### From scikit-learn If you're migrating from scikit-learn, here are the key differences: ```python # scikit-learn (Python) from sklearn.svm import SVC svm = SVC(kernel='rbf', C=1.0, gamma='auto') svm.fit(X, y) predictions = svm.predict(X_test) probabilities = svm.predict_proba(X_test) accuracy = svm.score(X_test, y_test) ``` ```cpp // SVM Classifier C++ #include using namespace svm_classifier; json config = {{"kernel", "rbf"}, {"C", 1.0}, {"gamma", "auto"}}; SVMClassifier svm(config); auto metrics = svm.fit(X, y); auto predictions = svm.predict(X_test); auto probabilities = svm.predict_proba(X_test); double accuracy = svm.score(X_test, y_test); ``` ### API Mapping | scikit-learn | SVM Classifier C++ | Notes | |--------------|-------------------|-------| | `SVC()` | `SVMClassifier()` | Constructor with similar parameters | | `fit(X, y)` | `fit(X, y)` | Returns training metrics | | `predict(X)` | `predict(X)` | Returns torch::Tensor | | `predict_proba(X)` | `predict_proba(X)` | Returns torch::Tensor | | `score(X, y)` | `score(X, y)` | Returns double accuracy | | `decision_function(X)` | `decision_function(X)` | Returns torch::Tensor | ## Acknowledgments This project builds upon the excellent work of: - **libsvm** by Chih-Chung Chang and Chih-Jen Lin - **liblinear** by the LIBLINEAR Project team - **PyTorch** by Facebook AI Research - **nlohmann::json** by Niels Lohmann - **Catch2** by the Catch2 team - **scikit-learn** for API inspiration Special thanks to the open-source community for their invaluable tools and libraries.